#!/usr/bin/perl -w use warnings; use IO::Handle; $usage = "execute_dwt_IvC_all.pl [TABULAR.in] [TABULAR.in] [TABULAR.out] [PDF.out] \n"; die $usage unless @ARGV == 4; #get the input arguments my $firstInputFile = $ARGV[0]; my $secondInputFile = $ARGV[1]; my $firstOutputFile = $ARGV[2]; my $secondOutputFile = $ARGV[3]; open (INPUT1, "<", $firstInputFile) || die("Could not open file $firstInputFile \n"); open (INPUT2, "<", $secondInputFile) || die("Could not open file $secondInputFile \n"); open (OUTPUT1, ">", $firstOutputFile) || die("Could not open file $firstOutputFile \n"); open (OUTPUT2, ">", $secondOutputFile) || die("Could not open file $secondOutputFile \n"); open (ERROR, ">", "error.txt") or die ("Could not open file error.txt \n"); #save all error messages into the error file $errorFile using the error file handle ERROR STDERR -> fdopen( \*ERROR, "w" ) or die ("Could not direct errors to the error file error.txt \n"); print "There are two input data files: \n"; print "The input data file is: $firstInputFile \n"; print "The control data file is: $secondInputFile \n"; # IvC test $test = "IvC"; # construct an R script to implement the IvC test print "\n"; $r_script = "get_dwt_IvC_test.r"; print "$r_script \n"; # R script open(Rcmd, ">", "$r_script") or die "Cannot open $r_script \n\n"; print Rcmd " ########################################################################################### # code to do wavelet Indel vs. Control # signal is the difference I-C; function is second moment i.e. variance from zero not mean # to perform wavelet transf. of signal, scale-by-scale analysis of the function # create null bands by permuting the original data series # generate plots and table matrix of correlation coefficients including p-values ############################################################################################ library(\"Rwave\"); library(\"wavethresh\"); library(\"waveslim\"); options(echo = FALSE) # normalize data norm <- function(data){ v <- (data - mean(data))/sd(data); if(sum(is.na(v)) >= 1){ v <- data; } return(v); } dwt_cor <- function(data.short, names.short, data.long, names.long, test, pdf, table, filter = 4, bc = \"symmetric\", wf = \"haar\", boundary = \"reflection\") { print(test); print(pdf); print(table); pdf(file = pdf); final_pvalue = NULL; title = NULL; short.levels <- wd(data.short[, 1], filter.number = filter, bc = bc)\$nlevels; title <- c(\"motif\"); for (i in 1:short.levels){ title <- c(title, paste(i, \"moment2\", sep = \"_\"), paste(i, \"pval\", sep = \"_\"), paste(i, \"test\", sep = \"_\")); } print(title); # loop to compare a vs a for(i in 1:length(names.short)){ wave1.dwt = NULL; m2.dwt = diff = var.dwt = NULL; out = NULL; out <- vector(length = length(title)); print(names.short[i]); print(names.long[i]); # need exit if not comparing motif(a) vs motif(a) if (names.short[i] != names.long[i]){ stop(paste(\"motif\", names.short[i], \"is not the same as\", names.long[i], sep = \" \")); } else { # signal is the difference I-C data sets diff<-data.short[,i]-data.long[,i]; # normalize the signal diff<-norm(diff); # function is 2nd moment # 2nd moment m_j = 1/N[sum_N(W_j + V_J)^2] = 1/N sum_N(W_j)^2 + (X_bar)^2 wave1.dwt <- dwt(diff, wf = wf, short.levels, boundary = boundary); var.dwt <- wave.variance(wave1.dwt); m2.dwt <- vector(length = short.levels) for(level in 1:short.levels){ m2.dwt[level] <- var.dwt[level, 1] + (mean(diff)^2); } # CI bands by permutation of time series feature1 = feature2 = NULL; feature1 = data.short[, i]; feature2 = data.long[, i]; null = results = med = NULL; m2_25 = m2_975 = NULL; for (k in 1:1000) { nk_1 = nk_2 = NULL; m2_null = var_null = NULL; null.levels = null_wave1 = null_diff = NULL; nk_1 <- sample(feature1, length(feature1), replace = FALSE); nk_2 <- sample(feature2, length(feature2), replace = FALSE); null.levels <- wd(nk_1, filter.number = filter, bc = bc)\$nlevels; null_diff <- nk_1-nk_2; null_diff <- norm(null_diff); null_wave1 <- dwt(null_diff, wf = wf, short.levels, boundary = boundary); var_null <- wave.variance(null_wave1); m2_null <- vector(length = null.levels); for(level in 1:null.levels){ m2_null[level] <- var_null[level, 1] + (mean(null_diff)^2); } null= rbind(null, m2_null); } null <- apply(null, 2, sort, na.last = TRUE); m2_25 <- null[25,]; m2_975 <- null[975,]; med <- apply(null, 2, median, na.rm = TRUE); # plot results <- cbind(m2.dwt, m2_25, m2_975); matplot(results, type = \"b\", pch = \"*\", lty = 1, col = c(1, 2, 2), xlab = \"Wavelet Scale\", ylab = c(\"Wavelet 2nd Moment\", test), main = (names.short[i]), cex.main = 0.75); abline(h = 1); # get pvalues by comparison to null distribution out <- c(names.short[i]); for (m in 1:length(m2.dwt)){ print(paste(\"scale\", m, sep = \" \")); print(paste(\"m2\", m2.dwt[m], sep = \" \")); print(paste(\"median\", med[m], sep = \" \")); out <- c(out, format(m2.dwt[m], digits = 4)); pv = NULL; if(is.na(m2.dwt[m])){ pv <- \"NA\"; } else { if (m2.dwt[m] >= med[m]){ # R tail test tail <- \"R\"; pv <- (length(which(null[, m] >= m2.dwt[m])))/(length(na.exclude(null[, m]))); } else{ if (m2.dwt[m] < med[m]){ # L tail test tail <- \"L\"; pv <- (length(which(null[, m] <= m2.dwt[m])))/(length(na.exclude(null[, m]))); } } } out <- c(out, pv); print(pv); out <- c(out, tail); } final_pvalue <-rbind(final_pvalue, out); print(out); } } colnames(final_pvalue) <- title; write.table(final_pvalue, file = table, sep = \"\\t\", quote = FALSE, row.names = FALSE); dev.off(); }\n"; print Rcmd " # execute # read in data inputData <- read.delim(\"$firstInputFile\"); inputDataNames <- colnames(inputData); controlData <- read.delim(\"$secondInputFile\"); controlDataNames <- colnames(controlData); # call the test function to implement IvC test dwt_cor(inputData, inputDataNames, controlData, controlDataNames, test = \"$test\", pdf = \"$secondOutputFile\", table = \"$firstOutputFile\"); print (\"done with the correlation test\"); \n"; print Rcmd "#eof\n"; close Rcmd; system("echo \"wavelet IvC test started on \`hostname\` at \`date\`\"\n"); system("R --no-restore --no-save --no-readline < $r_script > $r_script.out\n"); system("echo \"wavelet IvC test ended on \`hostname\` at \`date\`\"\n"); #close the input and output and error files close(ERROR); close(OUTPUT2); close(OUTPUT1); close(INPUT2); close(INPUT1);