| 1 | """ |
|---|
| 2 | # oct 2009 - must make a map file in case later usage requires it... |
|---|
| 3 | # galaxy tool xml files can define a galaxy supplied output filename |
|---|
| 4 | # that must be passed to the tool and used to return output |
|---|
| 5 | # here, the plink log file is copied to that file and removed |
|---|
| 6 | # took a while to figure this out! |
|---|
| 7 | # use exec_before_job to give files sensible names |
|---|
| 8 | # |
|---|
| 9 | # ross april 14 2007 |
|---|
| 10 | # plink cleanup script |
|---|
| 11 | # ross lazarus March 2007 for camp illumina whole genome data |
|---|
| 12 | # note problems with multiple commands being ignored - eg --freq --missing --mendel |
|---|
| 13 | # only the first seems to get done... |
|---|
| 14 | # |
|---|
| 15 | ##Summary statistics versus inclusion criteria |
|---|
| 16 | ## |
|---|
| 17 | ##Feature As summary statistic As inclusion criteria |
|---|
| 18 | ##Missingness per individual --missing --mind N |
|---|
| 19 | ##Missingness per marker --missing --geno N |
|---|
| 20 | ##Allele frequency --freq --maf N |
|---|
| 21 | ##Hardy-Weinberg equilibrium --hardy --hwe N |
|---|
| 22 | ##Mendel error rates --mendel --me N M |
|---|
| 23 | # |
|---|
| 24 | # this is rgLDIndep.py - main task is to decrease LD by filtering high LD pairs |
|---|
| 25 | # remove that function from rgClean.py as it may not be needed. |
|---|
| 26 | |
|---|
| 27 | """ |
|---|
| 28 | import sys,shutil,os,subprocess, glob, string, tempfile, time |
|---|
| 29 | from rgutils import plinke, timenow, galhtmlprefix |
|---|
| 30 | |
|---|
| 31 | prog = os.path.split(sys.argv[0])[-1] |
|---|
| 32 | myversion = 'January 4 2010' |
|---|
| 33 | |
|---|
| 34 | |
|---|
| 35 | def pruneld(plinktasks=[] ,cd='./',vclbase = []): |
|---|
| 36 | """ |
|---|
| 37 | plink blathers when doing pruning - ignore |
|---|
| 38 | Linkage disequilibrium based SNP pruning |
|---|
| 39 | if a million snps in 3 billion base pairs, have mean 3k spacing |
|---|
| 40 | assume 40-60k of ld in ceu, a window of 120k width is about 40 snps |
|---|
| 41 | so lots more is perhaps less efficient - each window computational cost is |
|---|
| 42 | ON^2 unless the code is smart enough to avoid unecessary computation where |
|---|
| 43 | allele frequencies make it impossible to see ld > the r^2 cutoff threshold |
|---|
| 44 | So, do a window and move forward 20? |
|---|
| 45 | from the plink docs at http://pngu.mgh.harvard.edu/~purcell/plink/summary.shtml#prune |
|---|
| 46 | |
|---|
| 47 | Sometimes it is useful to generate a pruned subset of SNPs that are in approximate linkage equilibrium with each other. This can be achieved via two commands: --indep which prunes based on the variance inflation factor (VIF), which recursively removes SNPs within a sliding window; second, --indep-pairwise which is similar, except it is based only on pairwise genotypic correlation. |
|---|
| 48 | |
|---|
| 49 | Hint The output of either of these commands is two lists of SNPs: those that are pruned out and those that are not. A separate command using the --extract or --exclude option is necessary to actually perform the pruning. |
|---|
| 50 | |
|---|
| 51 | The VIF pruning routine is performed: |
|---|
| 52 | plink --file data --indep 50 5 2 |
|---|
| 53 | |
|---|
| 54 | will create files |
|---|
| 55 | |
|---|
| 56 | plink.prune.in |
|---|
| 57 | plink.prune.out |
|---|
| 58 | |
|---|
| 59 | Each is a simlpe list of SNP IDs; both these files can subsequently be specified as the argument for |
|---|
| 60 | a --extract or --exclude command. |
|---|
| 61 | |
|---|
| 62 | The parameters for --indep are: window size in SNPs (e.g. 50), the number of SNPs to shift the |
|---|
| 63 | window at each step (e.g. 5), the VIF threshold. The VIF is 1/(1-R^2) where R^2 is the multiple correlation coefficient for a SNP being regressed on all other SNPs simultaneously. That is, this considers the correlations between SNPs but also between linear combinations of SNPs. A VIF of 10 is often taken to represent near collinearity problems in standard multiple regression analyses (i.e. implies R^2 of 0.9). A VIF of 1 would imply that the SNP is completely independent of all other SNPs. Practically, values between 1.5 and 2 should probably be used; particularly in small samples, if this threshold is too low and/or the window size is too large, too many SNPs may be removed. |
|---|
| 64 | |
|---|
| 65 | The second procedure is performed: |
|---|
| 66 | plink --file data --indep-pairwise 50 5 0.5 |
|---|
| 67 | |
|---|
| 68 | This generates the same output files as the first version; the only difference is that a |
|---|
| 69 | simple pairwise threshold is used. The first two parameters (50 and 5) are the same as above (window size and step); the third parameter represents the r^2 threshold. Note: this represents the pairwise SNP-SNP metric now, not the multiple correlation coefficient; also note, this is based on the genotypic correlation, i.e. it does not involve phasing. |
|---|
| 70 | |
|---|
| 71 | To give a concrete example: the command above that specifies 50 5 0.5 would a) consider a |
|---|
| 72 | window of 50 SNPs, b) calculate LD between each pair of SNPs in the window, b) remove one of a pair of SNPs if the LD is greater than 0.5, c) shift the window 5 SNPs forward and repeat the procedure. |
|---|
| 73 | |
|---|
| 74 | To make a new, pruned file, then use something like (in this example, we also convert the |
|---|
| 75 | standard PED fileset to a binary one): |
|---|
| 76 | plink --file data --extract plink.prune.in --make-bed --out pruneddata |
|---|
| 77 | """ |
|---|
| 78 | logres = ['## Rgenetics %s: http://rgenetics.org Galaxy Tools rgLDIndep.py Plink pruneLD runner\n' % myversion,] |
|---|
| 79 | for task in plinktasks: # each is a list |
|---|
| 80 | fplog,plog = tempfile.mkstemp() |
|---|
| 81 | sto = open(plog,'w') # to catch the blather |
|---|
| 82 | vcl = vclbase + task |
|---|
| 83 | s = '## ldindep now executing %s\n' % ' '.join(vcl) |
|---|
| 84 | print s |
|---|
| 85 | logres.append(s) |
|---|
| 86 | x = subprocess.Popen(' '.join(vcl),shell=True,stdout=sto,stderr=sto,cwd=cd) |
|---|
| 87 | retval = x.wait() |
|---|
| 88 | sto.close() |
|---|
| 89 | sto = open(plog,'r') # read |
|---|
| 90 | try: |
|---|
| 91 | lplog = sto.readlines() |
|---|
| 92 | lplog = [x for x in lplog if x.find('Pruning SNP') == -1] |
|---|
| 93 | logres += lplog |
|---|
| 94 | logres.append('\n') |
|---|
| 95 | except: |
|---|
| 96 | logres.append('### %s Strange - no std out from plink when running command line\n%s' % (timenow(),' '.join(vcl))) |
|---|
| 97 | sto.close() |
|---|
| 98 | os.unlink(plog) # no longer needed |
|---|
| 99 | return logres |
|---|
| 100 | |
|---|
| 101 | |
|---|
| 102 | |
|---|
| 103 | def clean(): |
|---|
| 104 | """ |
|---|
| 105 | """ |
|---|
| 106 | if len(sys.argv) < 14: |
|---|
| 107 | print >> sys.stdout, '## %s expected 14 params in sys.argv, got %d - %s' % (prog,len(sys.argv),sys.argv) |
|---|
| 108 | print >> sys.stdout, """this script will filter a linkage format ped |
|---|
| 109 | and map file containing genotypes. It takes 14 parameters - the plink --f parameter and" |
|---|
| 110 | a new filename root for the output clean data followed by the mind,geno,hwe,maf, mef and mei" |
|---|
| 111 | documented in the plink docs plus the file to be returned to Galaxy |
|---|
| 112 | Called as: |
|---|
| 113 | <command interpreter="python"> |
|---|
| 114 | rgLDIndep.py '$input_file.extra_files_path' '$input_file.metadata.base_name' '$title' '$mind' |
|---|
| 115 | '$geno' '$hwe' '$maf' '$mef' '$mei' '$out_file1' |
|---|
| 116 | '$out_file1.extra_files_path' '$window' '$step' '$r2' |
|---|
| 117 | </command> |
|---|
| 118 | """ |
|---|
| 119 | sys.exit(1) |
|---|
| 120 | plog = ['## Rgenetics: http://rgenetics.org Galaxy Tools rgLDIndep.py started %s\n' % timenow()] |
|---|
| 121 | inpath = sys.argv[1] |
|---|
| 122 | inbase = sys.argv[2] |
|---|
| 123 | killme = string.punctuation + string.whitespace |
|---|
| 124 | trantab = string.maketrans(killme,'_'*len(killme)) |
|---|
| 125 | title = sys.argv[3].translate(trantab) |
|---|
| 126 | mind = sys.argv[4] |
|---|
| 127 | geno = sys.argv[5] |
|---|
| 128 | hwe = sys.argv[6] |
|---|
| 129 | maf = sys.argv[7] |
|---|
| 130 | me1 = sys.argv[8] |
|---|
| 131 | me2 = sys.argv[9] |
|---|
| 132 | outfname = sys.argv[10] |
|---|
| 133 | outfpath = sys.argv[11] |
|---|
| 134 | winsize = sys.argv[12] |
|---|
| 135 | step = sys.argv[13] |
|---|
| 136 | r2 = sys.argv[14] |
|---|
| 137 | output = os.path.join(outfpath,outfname) |
|---|
| 138 | outpath = os.path.join(outfpath,title) |
|---|
| 139 | outprunepath = os.path.join(outfpath,'ldprune_%s' % title) |
|---|
| 140 | try: |
|---|
| 141 | os.makedirs(outfpath) |
|---|
| 142 | except: |
|---|
| 143 | pass |
|---|
| 144 | bfile = os.path.join(inpath,inbase) |
|---|
| 145 | filterout = os.path.join(outpath,'filtered_%s' % inbase) |
|---|
| 146 | outf = file(outfname,'w') |
|---|
| 147 | outf.write(galhtmlprefix % prog) |
|---|
| 148 | ldin = bfile |
|---|
| 149 | plinktasks = [['--bfile',ldin,'--indep-pairwise %s %s %s' % (winsize,step,r2),'--out',outpath, |
|---|
| 150 | '--mind',mind,'--geno',geno,'--maf',maf,'--hwe',hwe,'--me',me1,me2,], |
|---|
| 151 | ['--bfile',ldin,'--extract %s.prune.in --make-bed --out %s' % (outpath,outpath)], |
|---|
| 152 | ['--bfile',outpath,'--recode --out',outpath]] # make map file - don't really need ped but... |
|---|
| 153 | # subset of ld independent markers for eigenstrat and other requirements |
|---|
| 154 | vclbase = [plinke,'--noweb'] |
|---|
| 155 | prunelog = pruneld(plinktasks=plinktasks,cd=outfpath,vclbase = vclbase) |
|---|
| 156 | """This generates the same output files as the first version; |
|---|
| 157 | the only difference is that a simple pairwise threshold is used. |
|---|
| 158 | The first two parameters (50 and 5) are the same as above (window size and step); |
|---|
| 159 | the third parameter represents the r^2 threshold. |
|---|
| 160 | Note: this represents the pairwise SNP-SNP metric now, not the |
|---|
| 161 | multiple correlation coefficient; also note, this is based on the |
|---|
| 162 | genotypic correlation, i.e. it does not involve phasing. |
|---|
| 163 | """ |
|---|
| 164 | plog += prunelog |
|---|
| 165 | flog = '%s.log' % outpath |
|---|
| 166 | flogf = open(flog,'w') |
|---|
| 167 | flogf.write(''.join(plog)) |
|---|
| 168 | flogf.write('\n') |
|---|
| 169 | flogf.close() |
|---|
| 170 | globme = os.path.join(outfpath,'*') |
|---|
| 171 | flist = glob.glob(globme) |
|---|
| 172 | flist.sort() |
|---|
| 173 | for i, data in enumerate( flist ): |
|---|
| 174 | outf.write('<li><a href="%s">%s</a></li>\n' % (os.path.split(data)[-1],os.path.split(data)[-1])) |
|---|
| 175 | outf.write('</ol></div>\n') |
|---|
| 176 | outf.write("</div></body></html>") |
|---|
| 177 | outf.close() |
|---|
| 178 | |
|---|
| 179 | |
|---|
| 180 | if __name__ == "__main__": |
|---|
| 181 | clean() |
|---|
| 182 | |
|---|