1 | """ |
---|
2 | Data fitting and peak prediction routines |
---|
3 | """ |
---|
4 | import genetrack |
---|
5 | from genetrack import logger, conf |
---|
6 | from itertools import * |
---|
7 | import numpy, operator |
---|
8 | from math import log, exp |
---|
9 | |
---|
10 | def normal_function( w, sigma ): |
---|
11 | """ |
---|
12 | Defaulf fitting function, it returns values |
---|
13 | from a normal distribution over a certain width. |
---|
14 | |
---|
15 | The function is not normalized thus will be a representation of the sum of readcounts. |
---|
16 | """ |
---|
17 | log2 = log(2) |
---|
18 | sigma2 = float(sigma)**2 |
---|
19 | lo, hi = int(-w), int(w+1) |
---|
20 | pi = numpy.pi |
---|
21 | |
---|
22 | # function definition, not normalized |
---|
23 | # thus will correspond to read counts |
---|
24 | def normal_func(index): |
---|
25 | return exp( -index*index/sigma2/2 ) |
---|
26 | |
---|
27 | values = map( normal_func, range(lo, hi) ) |
---|
28 | values = numpy.array( values, numpy.float ) |
---|
29 | |
---|
30 | return abs(lo), hi, values |
---|
31 | |
---|
32 | def gaussian_smoothing(x, y, sigma=20, epsilon=0.1 ): |
---|
33 | """ |
---|
34 | Fits data represented by f(x)=y by a sum of normal curves where |
---|
35 | each curve corresponds to a normal function of variance=sigma and |
---|
36 | height equal to the y coordinate. |
---|
37 | |
---|
38 | Parameters x and y are lists. |
---|
39 | |
---|
40 | Returns a tuple of with the new x, and y coordinates. |
---|
41 | """ |
---|
42 | if len(x)==0: |
---|
43 | return x, y |
---|
44 | |
---|
45 | # this is a joyfully simple, marvelously elegant and superfast solution |
---|
46 | # that's possible thanks to numpy. I bow before thy greatness, NumPY!!! |
---|
47 | |
---|
48 | # transform to numpy arrays |
---|
49 | x = numpy.array( x, numpy.int ) |
---|
50 | y = numpy.array( y, numpy.float ) |
---|
51 | |
---|
52 | # a sanity check |
---|
53 | assert len(x)==len(y), "Data lenghts must match!" |
---|
54 | |
---|
55 | # operate within 5 standard deviations |
---|
56 | w = 5 * sigma |
---|
57 | |
---|
58 | # precompute the fitting values for a given sigma, |
---|
59 | lo, hi, normal = normal_function( w=w, sigma=sigma ) |
---|
60 | |
---|
61 | # shift the original vector by the first index, so that |
---|
62 | # the first index starts at the value lo |
---|
63 | # this copies the array |
---|
64 | zero_x = x - x[0] + lo |
---|
65 | |
---|
66 | # the size will influence memory consumption |
---|
67 | # long vectors need to be stiched together externally |
---|
68 | # uses around 100MB per 10 million size |
---|
69 | # on live displays there is no need to fit over large regions (over 100K) |
---|
70 | # as the features won't be visible by eye |
---|
71 | size = zero_x[-1] + lo + hi |
---|
72 | |
---|
73 | # this will hold the new fitted values |
---|
74 | new_y = numpy.zeros( size, numpy.float ) |
---|
75 | |
---|
76 | # performs the smoothing by mutating the array values in place |
---|
77 | for index, value in izip(zero_x, y): |
---|
78 | lox = index - lo |
---|
79 | hix = index + hi |
---|
80 | # this is where the magic happens |
---|
81 | new_y[ lox:hix ] += value * normal |
---|
82 | |
---|
83 | # keep only values above the epsilon |
---|
84 | # this cuts out (potentially massive) regions where there are no measurements |
---|
85 | new_x = ( new_y > epsilon ).nonzero()[0] |
---|
86 | new_y = new_y.take(new_x) |
---|
87 | |
---|
88 | # now shift back to get the real indices |
---|
89 | new_x = new_x + x[0] - lo |
---|
90 | |
---|
91 | return new_x, new_y |
---|
92 | |
---|
93 | def detect_peaks( x, y ): |
---|
94 | """ |
---|
95 | Detects peaks (local maxima) from an iterators x and y |
---|
96 | where f(x)=y. Will not propely detect plateus! |
---|
97 | |
---|
98 | Returns a list of tuples where the two |
---|
99 | elements correspond to the peak index and peak value. |
---|
100 | |
---|
101 | >>> y = [ 0.0, 1.0, 2.5, 1.0, 3.5, 1.0, 0.0, 0.0, 10.5, 2.0, 1.0, 0.0 ] |
---|
102 | >>> x = range(len(y)) |
---|
103 | >>> peaks = detect_peaks( x=x, y=y ) |
---|
104 | >>> peaks |
---|
105 | [(2, 2.5), (4, 3.5), (8, 10.5)] |
---|
106 | >>> select_peaks( peaks, exclusion=1) |
---|
107 | [(2, 2.5), (4, 3.5), (8, 10.5)] |
---|
108 | >>> select_peaks( peaks, exclusion=2) |
---|
109 | [(4, 3.5), (8, 10.5)] |
---|
110 | """ |
---|
111 | peaks = [] |
---|
112 | # finds local maxima |
---|
113 | for i in xrange(1, len(y)-1 ): |
---|
114 | left, mid, right = y[i-1], y[i], y[i+1] |
---|
115 | if left < mid >= right: |
---|
116 | peaks.append( (x[i], mid) ) |
---|
117 | return peaks |
---|
118 | |
---|
119 | def select_peaks( peaks, exclusion, threshold=0): |
---|
120 | """ |
---|
121 | Selects maximal non-overlapping peaks with a given exclusion zone |
---|
122 | and over a given treshold. |
---|
123 | |
---|
124 | Takes as input a list of (index, value) tuples corresponding to |
---|
125 | all local maxima. Returns a filtered list of tuples (index, value) |
---|
126 | with the maxima that pass the conditions. |
---|
127 | |
---|
128 | >>> peaks = [ (0, 20), (100, 19), (500, 4), (10**6, 2) ] |
---|
129 | >>> select_peaks( peaks, exclusion=200) |
---|
130 | [(0, 20), (500, 4), (1000000, 2)] |
---|
131 | """ |
---|
132 | |
---|
133 | # zero exclusion allows all peaks to pass |
---|
134 | if exclusion == 0: |
---|
135 | return peaks |
---|
136 | |
---|
137 | # sort by peak height |
---|
138 | work = [ (y, x) for x, y in peaks if y >= threshold ] |
---|
139 | work.sort() |
---|
140 | work.reverse() |
---|
141 | |
---|
142 | # none of the values passed the treshold |
---|
143 | if not work: |
---|
144 | return [] |
---|
145 | |
---|
146 | # this will store the selected peaks |
---|
147 | selected = [] |
---|
148 | |
---|
149 | # we assume that peaks are sorted already increasing order by x |
---|
150 | xmin, xmax = peaks[0][0], peaks[-1][0] |
---|
151 | |
---|
152 | # we create an occupancy vector to keep track of empty regions |
---|
153 | size = xmax - xmin + exclusion |
---|
154 | shift = xmin - exclusion |
---|
155 | |
---|
156 | # exclusion will be applied for both ends |
---|
157 | # the size must fit into memory, int8 is fairly small though |
---|
158 | # chop large chromosomes into chunks and predict on each |
---|
159 | empty = numpy.ones(size + exclusion, numpy.int8) |
---|
160 | |
---|
161 | # starting with the largest select from the existing peaks |
---|
162 | for peaky, peakx in work: |
---|
163 | |
---|
164 | # get the peak index as occupancy vector index |
---|
165 | locind = peakx - shift |
---|
166 | |
---|
167 | # check region |
---|
168 | if empty[locind]: |
---|
169 | |
---|
170 | # store this peak |
---|
171 | selected.append( ( peakx, peaky ) ) |
---|
172 | |
---|
173 | # block the region |
---|
174 | left = locind - exclusion |
---|
175 | right = locind + exclusion |
---|
176 | empty[left:right] = numpy.zeros (right - left, numpy.int8) |
---|
177 | |
---|
178 | selected.sort() |
---|
179 | return selected |
---|
180 | |
---|
181 | def fixed_width_predictor(x, y, params): |
---|
182 | """ |
---|
183 | Generates peaks from a x,y dataset. |
---|
184 | |
---|
185 | >>> from genetrack import util |
---|
186 | >>> |
---|
187 | >>> y = [ 0.0, 1.0, 2.5, 1.0, 3.5, 1.0, 0.0, 0.0, 10.5, 2.0, 1.0, 0.0 ] |
---|
188 | >>> x = range(len(y)) |
---|
189 | >>> |
---|
190 | >>> params = util.Params(feature_width=1, minimum_peak=0, zoom_value=1) |
---|
191 | >>> fixed_width_predictor(x, y, params=params) |
---|
192 | [(2, 2, '2.5'), (4, 4, '3.5'), (8, 8, '10.5')] |
---|
193 | >>> |
---|
194 | >>> params = util.Params(feature_width=2, minimum_peak=3, zoom_value=1) |
---|
195 | >>> fixed_width_predictor(x, y, params=params) |
---|
196 | [(3, 5, '3.5'), (7, 9, '10.5')] |
---|
197 | """ |
---|
198 | |
---|
199 | width = params.feature_width |
---|
200 | all_peaks = detect_peaks(x=x, y=y ) |
---|
201 | sel_peaks = select_peaks(peaks=all_peaks, exclusion=width, threshold=params.minimum_peak) |
---|
202 | |
---|
203 | #print params |
---|
204 | #print sel_peaks |
---|
205 | # generate the fixed lenght intervals with open |
---|
206 | h = width/2 |
---|
207 | if int(params.zoom_value)> 5000: |
---|
208 | results = [ (m - h, m + h, '' ) for m, v in sel_peaks ] |
---|
209 | else: |
---|
210 | results = [ (m - h, m + h, '%.1f' % v ) for m, v in sel_peaks ] |
---|
211 | |
---|
212 | return results |
---|
213 | |
---|
214 | def test(verbose=0): |
---|
215 | """ |
---|
216 | Main testrunnner |
---|
217 | """ |
---|
218 | import doctest |
---|
219 | doctest.testmod( verbose=verbose ) |
---|
220 | |
---|
221 | def test_plot(): |
---|
222 | "Visualize results via matplotlib" |
---|
223 | from pylab import plot, show |
---|
224 | |
---|
225 | x = [ 1, 101, 102, 103, 500, 503, ] |
---|
226 | y = [ 1, 1, 2, 3, 5, 1, ] |
---|
227 | |
---|
228 | nx, ny = gaussian_smoothing(x, y, sigma=30) |
---|
229 | |
---|
230 | plot(nx, ny, 'bo-') |
---|
231 | show() |
---|
232 | |
---|
233 | if __name__ == '__main__': |
---|
234 | test(verbose=0) |
---|
235 | |
---|
236 | peaks = [ (0, 20), (100, 19), (500, 4), (10**6, 2) ] |
---|
237 | print select_peaks( peaks, exclusion=200) |
---|
238 | |
---|
239 | #test_plot() |
---|
240 | |
---|
241 | |
---|
242 | |
---|