| 1 | #!/usr/bin/python2.6 |
|---|
| 2 | |
|---|
| 3 | """ |
|---|
| 4 | Given a list of intervals in BED format (`interval_file`) and a set of scores |
|---|
| 5 | (`score_file`) print each interval plus the average, minimum, and maximum of |
|---|
| 6 | the scores that fall in that interval. Scores can either be wiggle format |
|---|
| 7 | data or a directory containing binned array files (named according to the |
|---|
| 8 | sequence source / chromosome of the intervals). |
|---|
| 9 | |
|---|
| 10 | usage: %prog score_file interval_file [out_file] [options] |
|---|
| 11 | -b, --binned: 'score_file' is actually a directory of binned array files |
|---|
| 12 | -m, --mask=FILE: bed file containing regions not to consider valid |
|---|
| 13 | """ |
|---|
| 14 | |
|---|
| 15 | from __future__ import division |
|---|
| 16 | |
|---|
| 17 | import psyco_full |
|---|
| 18 | import sys |
|---|
| 19 | import os, os.path |
|---|
| 20 | from UserDict import DictMixin |
|---|
| 21 | import bx.wiggle |
|---|
| 22 | from bx.binned_array import BinnedArray, FileBinnedArray |
|---|
| 23 | from bx.bitset import * |
|---|
| 24 | from bx.bitset_builders import * |
|---|
| 25 | from bx_extras.fpconst import isNaN |
|---|
| 26 | from bx.cookbook import doc_optparse |
|---|
| 27 | from bx import misc |
|---|
| 28 | |
|---|
| 29 | class FileBinnedArrayDir( DictMixin ): |
|---|
| 30 | """ |
|---|
| 31 | Adapter that makes a directory of FileBinnedArray files look like |
|---|
| 32 | a regular dict of BinnedArray objects. |
|---|
| 33 | """ |
|---|
| 34 | def __init__( self, dir ): |
|---|
| 35 | self.dir = dir |
|---|
| 36 | self.cache = dict() |
|---|
| 37 | def __getitem__( self, key ): |
|---|
| 38 | value = None |
|---|
| 39 | if key in self.cache: |
|---|
| 40 | value = self.cache[key] |
|---|
| 41 | else: |
|---|
| 42 | fname = os.path.join( self.dir, "%s.ba" % key ) |
|---|
| 43 | if os.path.exists( fname ): |
|---|
| 44 | value = FileBinnedArray( open( fname ) ) |
|---|
| 45 | self.cache[key] = value |
|---|
| 46 | if value is None: |
|---|
| 47 | raise KeyError( "File does not exist: " + fname ) |
|---|
| 48 | return value |
|---|
| 49 | |
|---|
| 50 | def load_scores_wiggle( fname ): |
|---|
| 51 | """ |
|---|
| 52 | Read a wiggle file and return a dict of BinnedArray objects keyed |
|---|
| 53 | by chromosome. |
|---|
| 54 | """ |
|---|
| 55 | scores_by_chrom = dict() |
|---|
| 56 | for chrom, pos, val in bx.wiggle.Reader( misc.open_compressed( fname ) ): |
|---|
| 57 | if chrom not in scores_by_chrom: |
|---|
| 58 | scores_by_chrom[chrom] = BinnedArray() |
|---|
| 59 | scores_by_chrom[chrom][pos] = val |
|---|
| 60 | return scores_by_chrom |
|---|
| 61 | |
|---|
| 62 | def load_scores_ba_dir( dir ): |
|---|
| 63 | """ |
|---|
| 64 | Return a dict-like object (keyed by chromosome) that returns |
|---|
| 65 | FileBinnedArray objects created from "key.ba" files in `dir` |
|---|
| 66 | """ |
|---|
| 67 | return FileBinnedArrayDir( dir ) |
|---|
| 68 | |
|---|
| 69 | def main(): |
|---|
| 70 | |
|---|
| 71 | # Parse command line |
|---|
| 72 | options, args = doc_optparse.parse( __doc__ ) |
|---|
| 73 | try: |
|---|
| 74 | score_fname = args[0] |
|---|
| 75 | interval_fname = args[1] |
|---|
| 76 | if len( args ) > 2: |
|---|
| 77 | out_file = open( args[2], 'w' ) |
|---|
| 78 | else: |
|---|
| 79 | out_file = sys.stdout |
|---|
| 80 | binned = bool( options.binned ) |
|---|
| 81 | mask_fname = options.mask |
|---|
| 82 | except: |
|---|
| 83 | doc_optparse.exit() |
|---|
| 84 | |
|---|
| 85 | if binned: |
|---|
| 86 | scores_by_chrom = load_scores_ba_dir( score_fname ) |
|---|
| 87 | else: |
|---|
| 88 | scores_by_chrom = load_scores_wiggle( score_fname ) |
|---|
| 89 | |
|---|
| 90 | if mask_fname: |
|---|
| 91 | masks = binned_bitsets_from_file( open( mask_fname ) ) |
|---|
| 92 | else: |
|---|
| 93 | masks = None |
|---|
| 94 | |
|---|
| 95 | for line in open( interval_fname ): |
|---|
| 96 | fields = line.split() |
|---|
| 97 | chrom, start, stop = fields[0], int( fields[1] ), int( fields[2] ) |
|---|
| 98 | total = 0 |
|---|
| 99 | count = 0 |
|---|
| 100 | min_score = 100000000 |
|---|
| 101 | max_score = -100000000 |
|---|
| 102 | for i in range( start, stop ): |
|---|
| 103 | if chrom in scores_by_chrom and scores_by_chrom[chrom][i]: |
|---|
| 104 | # Skip if base is masked |
|---|
| 105 | if masks and chrom in masks: |
|---|
| 106 | if masks[chrom][i]: |
|---|
| 107 | continue |
|---|
| 108 | # Get the score, only count if not 'nan' |
|---|
| 109 | score = scores_by_chrom[chrom][i] |
|---|
| 110 | if not isNaN( score ): |
|---|
| 111 | total += score |
|---|
| 112 | count += 1 |
|---|
| 113 | max_score = max( score, max_score ) |
|---|
| 114 | min_score = min( score, min_score ) |
|---|
| 115 | if count > 0: |
|---|
| 116 | avg = total/count |
|---|
| 117 | else: |
|---|
| 118 | avg = "nan" |
|---|
| 119 | min_score = "nan" |
|---|
| 120 | max_score = "nan" |
|---|
| 121 | |
|---|
| 122 | print >> out_file, "\t".join( map( str, [ chrom, start, stop, avg, min_score, max_score ] ) ) |
|---|
| 123 | |
|---|
| 124 | out_file.close() |
|---|
| 125 | |
|---|
| 126 | if __name__ == "__main__": main() |
|---|