| 1 | # |
|---|
| 2 | # RSA.py : RSA encryption/decryption |
|---|
| 3 | # |
|---|
| 4 | # Part of the Python Cryptography Toolkit |
|---|
| 5 | # |
|---|
| 6 | # Distribute and use freely; there are no restrictions on further |
|---|
| 7 | # dissemination and usage except those imposed by the laws of your |
|---|
| 8 | # country of residence. This software is provided "as is" without |
|---|
| 9 | # warranty of fitness for use or suitability for any purpose, express |
|---|
| 10 | # or implied. Use at your own risk or not at all. |
|---|
| 11 | # |
|---|
| 12 | |
|---|
| 13 | __revision__ = "$Id: RSA.py,v 1.20 2004/05/06 12:52:54 akuchling Exp $" |
|---|
| 14 | |
|---|
| 15 | from Crypto.PublicKey import pubkey |
|---|
| 16 | from Crypto.Util import number |
|---|
| 17 | |
|---|
| 18 | try: |
|---|
| 19 | from Crypto.PublicKey import _fastmath |
|---|
| 20 | except ImportError: |
|---|
| 21 | _fastmath = None |
|---|
| 22 | |
|---|
| 23 | class error (Exception): |
|---|
| 24 | pass |
|---|
| 25 | |
|---|
| 26 | def generate(bits, randfunc, progress_func=None): |
|---|
| 27 | """generate(bits:int, randfunc:callable, progress_func:callable) |
|---|
| 28 | |
|---|
| 29 | Generate an RSA key of length 'bits', using 'randfunc' to get |
|---|
| 30 | random data and 'progress_func', if present, to display |
|---|
| 31 | the progress of the key generation. |
|---|
| 32 | """ |
|---|
| 33 | obj=RSAobj() |
|---|
| 34 | |
|---|
| 35 | # Generate the prime factors of n |
|---|
| 36 | if progress_func: |
|---|
| 37 | progress_func('p,q\n') |
|---|
| 38 | p = q = 1L |
|---|
| 39 | while number.size(p*q) < bits: |
|---|
| 40 | p = pubkey.getPrime(bits/2, randfunc) |
|---|
| 41 | q = pubkey.getPrime(bits/2, randfunc) |
|---|
| 42 | |
|---|
| 43 | # p shall be smaller than q (for calc of u) |
|---|
| 44 | if p > q: |
|---|
| 45 | (p, q)=(q, p) |
|---|
| 46 | obj.p = p |
|---|
| 47 | obj.q = q |
|---|
| 48 | |
|---|
| 49 | if progress_func: |
|---|
| 50 | progress_func('u\n') |
|---|
| 51 | obj.u = pubkey.inverse(obj.p, obj.q) |
|---|
| 52 | obj.n = obj.p*obj.q |
|---|
| 53 | |
|---|
| 54 | obj.e = 65537L |
|---|
| 55 | if progress_func: |
|---|
| 56 | progress_func('d\n') |
|---|
| 57 | obj.d=pubkey.inverse(obj.e, (obj.p-1)*(obj.q-1)) |
|---|
| 58 | |
|---|
| 59 | assert bits <= 1+obj.size(), "Generated key is too small" |
|---|
| 60 | |
|---|
| 61 | return obj |
|---|
| 62 | |
|---|
| 63 | def construct(tuple): |
|---|
| 64 | """construct(tuple:(long,) : RSAobj |
|---|
| 65 | Construct an RSA object from a 2-, 3-, 5-, or 6-tuple of numbers. |
|---|
| 66 | """ |
|---|
| 67 | |
|---|
| 68 | obj=RSAobj() |
|---|
| 69 | if len(tuple) not in [2,3,5,6]: |
|---|
| 70 | raise error, 'argument for construct() wrong length' |
|---|
| 71 | for i in range(len(tuple)): |
|---|
| 72 | field = obj.keydata[i] |
|---|
| 73 | setattr(obj, field, tuple[i]) |
|---|
| 74 | if len(tuple) >= 5: |
|---|
| 75 | # Ensure p is smaller than q |
|---|
| 76 | if obj.p>obj.q: |
|---|
| 77 | (obj.p, obj.q)=(obj.q, obj.p) |
|---|
| 78 | |
|---|
| 79 | if len(tuple) == 5: |
|---|
| 80 | # u not supplied, so we're going to have to compute it. |
|---|
| 81 | obj.u=pubkey.inverse(obj.p, obj.q) |
|---|
| 82 | |
|---|
| 83 | return obj |
|---|
| 84 | |
|---|
| 85 | class RSAobj(pubkey.pubkey): |
|---|
| 86 | keydata = ['n', 'e', 'd', 'p', 'q', 'u'] |
|---|
| 87 | def _encrypt(self, plaintext, K=''): |
|---|
| 88 | if self.n<=plaintext: |
|---|
| 89 | raise error, 'Plaintext too large' |
|---|
| 90 | return (pow(plaintext, self.e, self.n),) |
|---|
| 91 | |
|---|
| 92 | def _decrypt(self, ciphertext): |
|---|
| 93 | if (not hasattr(self, 'd')): |
|---|
| 94 | raise error, 'Private key not available in this object' |
|---|
| 95 | if self.n<=ciphertext[0]: |
|---|
| 96 | raise error, 'Ciphertext too large' |
|---|
| 97 | return pow(ciphertext[0], self.d, self.n) |
|---|
| 98 | |
|---|
| 99 | def _sign(self, M, K=''): |
|---|
| 100 | return (self._decrypt((M,)),) |
|---|
| 101 | |
|---|
| 102 | def _verify(self, M, sig): |
|---|
| 103 | m2=self._encrypt(sig[0]) |
|---|
| 104 | if m2[0]==M: |
|---|
| 105 | return 1 |
|---|
| 106 | else: return 0 |
|---|
| 107 | |
|---|
| 108 | def _blind(self, M, B): |
|---|
| 109 | tmp = pow(B, self.e, self.n) |
|---|
| 110 | return (M * tmp) % self.n |
|---|
| 111 | |
|---|
| 112 | def _unblind(self, M, B): |
|---|
| 113 | tmp = pubkey.inverse(B, self.n) |
|---|
| 114 | return (M * tmp) % self.n |
|---|
| 115 | |
|---|
| 116 | def can_blind (self): |
|---|
| 117 | """can_blind() : bool |
|---|
| 118 | Return a Boolean value recording whether this algorithm can |
|---|
| 119 | blind data. (This does not imply that this |
|---|
| 120 | particular key object has the private information required to |
|---|
| 121 | to blind a message.) |
|---|
| 122 | """ |
|---|
| 123 | return 1 |
|---|
| 124 | |
|---|
| 125 | def size(self): |
|---|
| 126 | """size() : int |
|---|
| 127 | Return the maximum number of bits that can be handled by this key. |
|---|
| 128 | """ |
|---|
| 129 | return number.size(self.n) - 1 |
|---|
| 130 | |
|---|
| 131 | def has_private(self): |
|---|
| 132 | """has_private() : bool |
|---|
| 133 | Return a Boolean denoting whether the object contains |
|---|
| 134 | private components. |
|---|
| 135 | """ |
|---|
| 136 | if hasattr(self, 'd'): |
|---|
| 137 | return 1 |
|---|
| 138 | else: return 0 |
|---|
| 139 | |
|---|
| 140 | def publickey(self): |
|---|
| 141 | """publickey(): RSAobj |
|---|
| 142 | Return a new key object containing only the public key information. |
|---|
| 143 | """ |
|---|
| 144 | return construct((self.n, self.e)) |
|---|
| 145 | |
|---|
| 146 | class RSAobj_c(pubkey.pubkey): |
|---|
| 147 | keydata = ['n', 'e', 'd', 'p', 'q', 'u'] |
|---|
| 148 | |
|---|
| 149 | def __init__(self, key): |
|---|
| 150 | self.key = key |
|---|
| 151 | |
|---|
| 152 | def __getattr__(self, attr): |
|---|
| 153 | if attr in self.keydata: |
|---|
| 154 | return getattr(self.key, attr) |
|---|
| 155 | else: |
|---|
| 156 | if self.__dict__.has_key(attr): |
|---|
| 157 | self.__dict__[attr] |
|---|
| 158 | else: |
|---|
| 159 | raise AttributeError, '%s instance has no attribute %s' % (self.__class__, attr) |
|---|
| 160 | |
|---|
| 161 | def __getstate__(self): |
|---|
| 162 | d = {} |
|---|
| 163 | for k in self.keydata: |
|---|
| 164 | if hasattr(self.key, k): |
|---|
| 165 | d[k]=getattr(self.key, k) |
|---|
| 166 | return d |
|---|
| 167 | |
|---|
| 168 | def __setstate__(self, state): |
|---|
| 169 | n,e = state['n'], state['e'] |
|---|
| 170 | if not state.has_key('d'): |
|---|
| 171 | self.key = _fastmath.rsa_construct(n,e) |
|---|
| 172 | else: |
|---|
| 173 | d = state['d'] |
|---|
| 174 | if not state.has_key('q'): |
|---|
| 175 | self.key = _fastmath.rsa_construct(n,e,d) |
|---|
| 176 | else: |
|---|
| 177 | p, q, u = state['p'], state['q'], state['u'] |
|---|
| 178 | self.key = _fastmath.rsa_construct(n,e,d,p,q,u) |
|---|
| 179 | |
|---|
| 180 | def _encrypt(self, plain, K): |
|---|
| 181 | return (self.key._encrypt(plain),) |
|---|
| 182 | |
|---|
| 183 | def _decrypt(self, cipher): |
|---|
| 184 | return self.key._decrypt(cipher[0]) |
|---|
| 185 | |
|---|
| 186 | def _sign(self, M, K): |
|---|
| 187 | return (self.key._sign(M),) |
|---|
| 188 | |
|---|
| 189 | def _verify(self, M, sig): |
|---|
| 190 | return self.key._verify(M, sig[0]) |
|---|
| 191 | |
|---|
| 192 | def _blind(self, M, B): |
|---|
| 193 | return self.key._blind(M, B) |
|---|
| 194 | |
|---|
| 195 | def _unblind(self, M, B): |
|---|
| 196 | return self.key._unblind(M, B) |
|---|
| 197 | |
|---|
| 198 | def can_blind (self): |
|---|
| 199 | return 1 |
|---|
| 200 | |
|---|
| 201 | def size(self): |
|---|
| 202 | return self.key.size() |
|---|
| 203 | |
|---|
| 204 | def has_private(self): |
|---|
| 205 | return self.key.has_private() |
|---|
| 206 | |
|---|
| 207 | def publickey(self): |
|---|
| 208 | return construct_c((self.key.n, self.key.e)) |
|---|
| 209 | |
|---|
| 210 | def generate_c(bits, randfunc, progress_func = None): |
|---|
| 211 | # Generate the prime factors of n |
|---|
| 212 | if progress_func: |
|---|
| 213 | progress_func('p,q\n') |
|---|
| 214 | |
|---|
| 215 | p = q = 1L |
|---|
| 216 | while number.size(p*q) < bits: |
|---|
| 217 | p = pubkey.getPrime(bits/2, randfunc) |
|---|
| 218 | q = pubkey.getPrime(bits/2, randfunc) |
|---|
| 219 | |
|---|
| 220 | # p shall be smaller than q (for calc of u) |
|---|
| 221 | if p > q: |
|---|
| 222 | (p, q)=(q, p) |
|---|
| 223 | if progress_func: |
|---|
| 224 | progress_func('u\n') |
|---|
| 225 | u=pubkey.inverse(p, q) |
|---|
| 226 | n=p*q |
|---|
| 227 | |
|---|
| 228 | e = 65537L |
|---|
| 229 | if progress_func: |
|---|
| 230 | progress_func('d\n') |
|---|
| 231 | d=pubkey.inverse(e, (p-1)*(q-1)) |
|---|
| 232 | key = _fastmath.rsa_construct(n,e,d,p,q,u) |
|---|
| 233 | obj = RSAobj_c(key) |
|---|
| 234 | |
|---|
| 235 | ## print p |
|---|
| 236 | ## print q |
|---|
| 237 | ## print number.size(p), number.size(q), number.size(q*p), |
|---|
| 238 | ## print obj.size(), bits |
|---|
| 239 | assert bits <= 1+obj.size(), "Generated key is too small" |
|---|
| 240 | return obj |
|---|
| 241 | |
|---|
| 242 | |
|---|
| 243 | def construct_c(tuple): |
|---|
| 244 | key = apply(_fastmath.rsa_construct, tuple) |
|---|
| 245 | return RSAobj_c(key) |
|---|
| 246 | |
|---|
| 247 | object = RSAobj |
|---|
| 248 | |
|---|
| 249 | generate_py = generate |
|---|
| 250 | construct_py = construct |
|---|
| 251 | |
|---|
| 252 | if _fastmath: |
|---|
| 253 | #print "using C version of RSA" |
|---|
| 254 | generate = generate_c |
|---|
| 255 | construct = construct_c |
|---|
| 256 | error = _fastmath.error |
|---|