1 | # |
---|
2 | # RSA.py : RSA encryption/decryption |
---|
3 | # |
---|
4 | # Part of the Python Cryptography Toolkit |
---|
5 | # |
---|
6 | # Distribute and use freely; there are no restrictions on further |
---|
7 | # dissemination and usage except those imposed by the laws of your |
---|
8 | # country of residence. This software is provided "as is" without |
---|
9 | # warranty of fitness for use or suitability for any purpose, express |
---|
10 | # or implied. Use at your own risk or not at all. |
---|
11 | # |
---|
12 | |
---|
13 | __revision__ = "$Id: RSA.py,v 1.20 2004/05/06 12:52:54 akuchling Exp $" |
---|
14 | |
---|
15 | from Crypto.PublicKey import pubkey |
---|
16 | from Crypto.Util import number |
---|
17 | |
---|
18 | try: |
---|
19 | from Crypto.PublicKey import _fastmath |
---|
20 | except ImportError: |
---|
21 | _fastmath = None |
---|
22 | |
---|
23 | class error (Exception): |
---|
24 | pass |
---|
25 | |
---|
26 | def generate(bits, randfunc, progress_func=None): |
---|
27 | """generate(bits:int, randfunc:callable, progress_func:callable) |
---|
28 | |
---|
29 | Generate an RSA key of length 'bits', using 'randfunc' to get |
---|
30 | random data and 'progress_func', if present, to display |
---|
31 | the progress of the key generation. |
---|
32 | """ |
---|
33 | obj=RSAobj() |
---|
34 | |
---|
35 | # Generate the prime factors of n |
---|
36 | if progress_func: |
---|
37 | progress_func('p,q\n') |
---|
38 | p = q = 1L |
---|
39 | while number.size(p*q) < bits: |
---|
40 | p = pubkey.getPrime(bits/2, randfunc) |
---|
41 | q = pubkey.getPrime(bits/2, randfunc) |
---|
42 | |
---|
43 | # p shall be smaller than q (for calc of u) |
---|
44 | if p > q: |
---|
45 | (p, q)=(q, p) |
---|
46 | obj.p = p |
---|
47 | obj.q = q |
---|
48 | |
---|
49 | if progress_func: |
---|
50 | progress_func('u\n') |
---|
51 | obj.u = pubkey.inverse(obj.p, obj.q) |
---|
52 | obj.n = obj.p*obj.q |
---|
53 | |
---|
54 | obj.e = 65537L |
---|
55 | if progress_func: |
---|
56 | progress_func('d\n') |
---|
57 | obj.d=pubkey.inverse(obj.e, (obj.p-1)*(obj.q-1)) |
---|
58 | |
---|
59 | assert bits <= 1+obj.size(), "Generated key is too small" |
---|
60 | |
---|
61 | return obj |
---|
62 | |
---|
63 | def construct(tuple): |
---|
64 | """construct(tuple:(long,) : RSAobj |
---|
65 | Construct an RSA object from a 2-, 3-, 5-, or 6-tuple of numbers. |
---|
66 | """ |
---|
67 | |
---|
68 | obj=RSAobj() |
---|
69 | if len(tuple) not in [2,3,5,6]: |
---|
70 | raise error, 'argument for construct() wrong length' |
---|
71 | for i in range(len(tuple)): |
---|
72 | field = obj.keydata[i] |
---|
73 | setattr(obj, field, tuple[i]) |
---|
74 | if len(tuple) >= 5: |
---|
75 | # Ensure p is smaller than q |
---|
76 | if obj.p>obj.q: |
---|
77 | (obj.p, obj.q)=(obj.q, obj.p) |
---|
78 | |
---|
79 | if len(tuple) == 5: |
---|
80 | # u not supplied, so we're going to have to compute it. |
---|
81 | obj.u=pubkey.inverse(obj.p, obj.q) |
---|
82 | |
---|
83 | return obj |
---|
84 | |
---|
85 | class RSAobj(pubkey.pubkey): |
---|
86 | keydata = ['n', 'e', 'd', 'p', 'q', 'u'] |
---|
87 | def _encrypt(self, plaintext, K=''): |
---|
88 | if self.n<=plaintext: |
---|
89 | raise error, 'Plaintext too large' |
---|
90 | return (pow(plaintext, self.e, self.n),) |
---|
91 | |
---|
92 | def _decrypt(self, ciphertext): |
---|
93 | if (not hasattr(self, 'd')): |
---|
94 | raise error, 'Private key not available in this object' |
---|
95 | if self.n<=ciphertext[0]: |
---|
96 | raise error, 'Ciphertext too large' |
---|
97 | return pow(ciphertext[0], self.d, self.n) |
---|
98 | |
---|
99 | def _sign(self, M, K=''): |
---|
100 | return (self._decrypt((M,)),) |
---|
101 | |
---|
102 | def _verify(self, M, sig): |
---|
103 | m2=self._encrypt(sig[0]) |
---|
104 | if m2[0]==M: |
---|
105 | return 1 |
---|
106 | else: return 0 |
---|
107 | |
---|
108 | def _blind(self, M, B): |
---|
109 | tmp = pow(B, self.e, self.n) |
---|
110 | return (M * tmp) % self.n |
---|
111 | |
---|
112 | def _unblind(self, M, B): |
---|
113 | tmp = pubkey.inverse(B, self.n) |
---|
114 | return (M * tmp) % self.n |
---|
115 | |
---|
116 | def can_blind (self): |
---|
117 | """can_blind() : bool |
---|
118 | Return a Boolean value recording whether this algorithm can |
---|
119 | blind data. (This does not imply that this |
---|
120 | particular key object has the private information required to |
---|
121 | to blind a message.) |
---|
122 | """ |
---|
123 | return 1 |
---|
124 | |
---|
125 | def size(self): |
---|
126 | """size() : int |
---|
127 | Return the maximum number of bits that can be handled by this key. |
---|
128 | """ |
---|
129 | return number.size(self.n) - 1 |
---|
130 | |
---|
131 | def has_private(self): |
---|
132 | """has_private() : bool |
---|
133 | Return a Boolean denoting whether the object contains |
---|
134 | private components. |
---|
135 | """ |
---|
136 | if hasattr(self, 'd'): |
---|
137 | return 1 |
---|
138 | else: return 0 |
---|
139 | |
---|
140 | def publickey(self): |
---|
141 | """publickey(): RSAobj |
---|
142 | Return a new key object containing only the public key information. |
---|
143 | """ |
---|
144 | return construct((self.n, self.e)) |
---|
145 | |
---|
146 | class RSAobj_c(pubkey.pubkey): |
---|
147 | keydata = ['n', 'e', 'd', 'p', 'q', 'u'] |
---|
148 | |
---|
149 | def __init__(self, key): |
---|
150 | self.key = key |
---|
151 | |
---|
152 | def __getattr__(self, attr): |
---|
153 | if attr in self.keydata: |
---|
154 | return getattr(self.key, attr) |
---|
155 | else: |
---|
156 | if self.__dict__.has_key(attr): |
---|
157 | self.__dict__[attr] |
---|
158 | else: |
---|
159 | raise AttributeError, '%s instance has no attribute %s' % (self.__class__, attr) |
---|
160 | |
---|
161 | def __getstate__(self): |
---|
162 | d = {} |
---|
163 | for k in self.keydata: |
---|
164 | if hasattr(self.key, k): |
---|
165 | d[k]=getattr(self.key, k) |
---|
166 | return d |
---|
167 | |
---|
168 | def __setstate__(self, state): |
---|
169 | n,e = state['n'], state['e'] |
---|
170 | if not state.has_key('d'): |
---|
171 | self.key = _fastmath.rsa_construct(n,e) |
---|
172 | else: |
---|
173 | d = state['d'] |
---|
174 | if not state.has_key('q'): |
---|
175 | self.key = _fastmath.rsa_construct(n,e,d) |
---|
176 | else: |
---|
177 | p, q, u = state['p'], state['q'], state['u'] |
---|
178 | self.key = _fastmath.rsa_construct(n,e,d,p,q,u) |
---|
179 | |
---|
180 | def _encrypt(self, plain, K): |
---|
181 | return (self.key._encrypt(plain),) |
---|
182 | |
---|
183 | def _decrypt(self, cipher): |
---|
184 | return self.key._decrypt(cipher[0]) |
---|
185 | |
---|
186 | def _sign(self, M, K): |
---|
187 | return (self.key._sign(M),) |
---|
188 | |
---|
189 | def _verify(self, M, sig): |
---|
190 | return self.key._verify(M, sig[0]) |
---|
191 | |
---|
192 | def _blind(self, M, B): |
---|
193 | return self.key._blind(M, B) |
---|
194 | |
---|
195 | def _unblind(self, M, B): |
---|
196 | return self.key._unblind(M, B) |
---|
197 | |
---|
198 | def can_blind (self): |
---|
199 | return 1 |
---|
200 | |
---|
201 | def size(self): |
---|
202 | return self.key.size() |
---|
203 | |
---|
204 | def has_private(self): |
---|
205 | return self.key.has_private() |
---|
206 | |
---|
207 | def publickey(self): |
---|
208 | return construct_c((self.key.n, self.key.e)) |
---|
209 | |
---|
210 | def generate_c(bits, randfunc, progress_func = None): |
---|
211 | # Generate the prime factors of n |
---|
212 | if progress_func: |
---|
213 | progress_func('p,q\n') |
---|
214 | |
---|
215 | p = q = 1L |
---|
216 | while number.size(p*q) < bits: |
---|
217 | p = pubkey.getPrime(bits/2, randfunc) |
---|
218 | q = pubkey.getPrime(bits/2, randfunc) |
---|
219 | |
---|
220 | # p shall be smaller than q (for calc of u) |
---|
221 | if p > q: |
---|
222 | (p, q)=(q, p) |
---|
223 | if progress_func: |
---|
224 | progress_func('u\n') |
---|
225 | u=pubkey.inverse(p, q) |
---|
226 | n=p*q |
---|
227 | |
---|
228 | e = 65537L |
---|
229 | if progress_func: |
---|
230 | progress_func('d\n') |
---|
231 | d=pubkey.inverse(e, (p-1)*(q-1)) |
---|
232 | key = _fastmath.rsa_construct(n,e,d,p,q,u) |
---|
233 | obj = RSAobj_c(key) |
---|
234 | |
---|
235 | ## print p |
---|
236 | ## print q |
---|
237 | ## print number.size(p), number.size(q), number.size(q*p), |
---|
238 | ## print obj.size(), bits |
---|
239 | assert bits <= 1+obj.size(), "Generated key is too small" |
---|
240 | return obj |
---|
241 | |
---|
242 | |
---|
243 | def construct_c(tuple): |
---|
244 | key = apply(_fastmath.rsa_construct, tuple) |
---|
245 | return RSAobj_c(key) |
---|
246 | |
---|
247 | object = RSAobj |
---|
248 | |
---|
249 | generate_py = generate |
---|
250 | construct_py = construct |
---|
251 | |
---|
252 | if _fastmath: |
---|
253 | #print "using C version of RSA" |
---|
254 | generate = generate_c |
---|
255 | construct = construct_c |
---|
256 | error = _fastmath.error |
---|