1 | # |
---|
2 | # qNEW.py : The q-NEW signature algorithm. |
---|
3 | # |
---|
4 | # Part of the Python Cryptography Toolkit |
---|
5 | # |
---|
6 | # Distribute and use freely; there are no restrictions on further |
---|
7 | # dissemination and usage except those imposed by the laws of your |
---|
8 | # country of residence. This software is provided "as is" without |
---|
9 | # warranty of fitness for use or suitability for any purpose, express |
---|
10 | # or implied. Use at your own risk or not at all. |
---|
11 | # |
---|
12 | |
---|
13 | __revision__ = "$Id: qNEW.py,v 1.8 2003/04/04 15:13:35 akuchling Exp $" |
---|
14 | |
---|
15 | from Crypto.PublicKey import pubkey |
---|
16 | from Crypto.Util.number import * |
---|
17 | from Crypto.Hash import SHA |
---|
18 | |
---|
19 | class error (Exception): |
---|
20 | pass |
---|
21 | |
---|
22 | HASHBITS = 160 # Size of SHA digests |
---|
23 | |
---|
24 | def generate(bits, randfunc, progress_func=None): |
---|
25 | """generate(bits:int, randfunc:callable, progress_func:callable) |
---|
26 | |
---|
27 | Generate a qNEW key of length 'bits', using 'randfunc' to get |
---|
28 | random data and 'progress_func', if present, to display |
---|
29 | the progress of the key generation. |
---|
30 | """ |
---|
31 | obj=qNEWobj() |
---|
32 | |
---|
33 | # Generate prime numbers p and q. q is a 160-bit prime |
---|
34 | # number. p is another prime number (the modulus) whose bit |
---|
35 | # size is chosen by the caller, and is generated so that p-1 |
---|
36 | # is a multiple of q. |
---|
37 | # |
---|
38 | # Note that only a single seed is used to |
---|
39 | # generate p and q; if someone generates a key for you, you can |
---|
40 | # use the seed to duplicate the key generation. This can |
---|
41 | # protect you from someone generating values of p,q that have |
---|
42 | # some special form that's easy to break. |
---|
43 | if progress_func: |
---|
44 | progress_func('p,q\n') |
---|
45 | while (1): |
---|
46 | obj.q = getPrime(160, randfunc) |
---|
47 | # assert pow(2, 159L)<obj.q<pow(2, 160L) |
---|
48 | obj.seed = S = long_to_bytes(obj.q) |
---|
49 | C, N, V = 0, 2, {} |
---|
50 | # Compute b and n such that bits-1 = b + n*HASHBITS |
---|
51 | n= (bits-1) / HASHBITS |
---|
52 | b= (bits-1) % HASHBITS ; powb=2L << b |
---|
53 | powL1=pow(long(2), bits-1) |
---|
54 | while C<4096: |
---|
55 | # The V array will contain (bits-1) bits of random |
---|
56 | # data, that are assembled to produce a candidate |
---|
57 | # value for p. |
---|
58 | for k in range(0, n+1): |
---|
59 | V[k]=bytes_to_long(SHA.new(S+str(N)+str(k)).digest()) |
---|
60 | p = V[n] % powb |
---|
61 | for k in range(n-1, -1, -1): |
---|
62 | p= (p << long(HASHBITS) )+V[k] |
---|
63 | p = p+powL1 # Ensure the high bit is set |
---|
64 | |
---|
65 | # Ensure that p-1 is a multiple of q |
---|
66 | p = p - (p % (2*obj.q)-1) |
---|
67 | |
---|
68 | # If p is still the right size, and it's prime, we're done! |
---|
69 | if powL1<=p and isPrime(p): |
---|
70 | break |
---|
71 | |
---|
72 | # Otherwise, increment the counter and try again |
---|
73 | C, N = C+1, N+n+1 |
---|
74 | if C<4096: |
---|
75 | break # Ended early, so exit the while loop |
---|
76 | if progress_func: |
---|
77 | progress_func('4096 values of p tried\n') |
---|
78 | |
---|
79 | obj.p = p |
---|
80 | power=(p-1)/obj.q |
---|
81 | |
---|
82 | # Next parameter: g = h**((p-1)/q) mod p, such that h is any |
---|
83 | # number <p-1, and g>1. g is kept; h can be discarded. |
---|
84 | if progress_func: |
---|
85 | progress_func('h,g\n') |
---|
86 | while (1): |
---|
87 | h=bytes_to_long(randfunc(bits)) % (p-1) |
---|
88 | g=pow(h, power, p) |
---|
89 | if 1<h<p-1 and g>1: |
---|
90 | break |
---|
91 | obj.g=g |
---|
92 | |
---|
93 | # x is the private key information, and is |
---|
94 | # just a random number between 0 and q. |
---|
95 | # y=g**x mod p, and is part of the public information. |
---|
96 | if progress_func: |
---|
97 | progress_func('x,y\n') |
---|
98 | while (1): |
---|
99 | x=bytes_to_long(randfunc(20)) |
---|
100 | if 0 < x < obj.q: |
---|
101 | break |
---|
102 | obj.x, obj.y=x, pow(g, x, p) |
---|
103 | |
---|
104 | return obj |
---|
105 | |
---|
106 | # Construct a qNEW object |
---|
107 | def construct(tuple): |
---|
108 | """construct(tuple:(long,long,long,long)|(long,long,long,long,long) |
---|
109 | Construct a qNEW object from a 4- or 5-tuple of numbers. |
---|
110 | """ |
---|
111 | obj=qNEWobj() |
---|
112 | if len(tuple) not in [4,5]: |
---|
113 | raise error, 'argument for construct() wrong length' |
---|
114 | for i in range(len(tuple)): |
---|
115 | field = obj.keydata[i] |
---|
116 | setattr(obj, field, tuple[i]) |
---|
117 | return obj |
---|
118 | |
---|
119 | class qNEWobj(pubkey.pubkey): |
---|
120 | keydata=['p', 'q', 'g', 'y', 'x'] |
---|
121 | |
---|
122 | def _sign(self, M, K=''): |
---|
123 | if (self.q<=K): |
---|
124 | raise error, 'K is greater than q' |
---|
125 | if M<0: |
---|
126 | raise error, 'Illegal value of M (<0)' |
---|
127 | if M>=pow(2,161L): |
---|
128 | raise error, 'Illegal value of M (too large)' |
---|
129 | r=pow(self.g, K, self.p) % self.q |
---|
130 | s=(K- (r*M*self.x % self.q)) % self.q |
---|
131 | return (r,s) |
---|
132 | def _verify(self, M, sig): |
---|
133 | r, s = sig |
---|
134 | if r<=0 or r>=self.q or s<=0 or s>=self.q: |
---|
135 | return 0 |
---|
136 | if M<0: |
---|
137 | raise error, 'Illegal value of M (<0)' |
---|
138 | if M<=0 or M>=pow(2,161L): |
---|
139 | return 0 |
---|
140 | v1 = pow(self.g, s, self.p) |
---|
141 | v2 = pow(self.y, M*r, self.p) |
---|
142 | v = ((v1*v2) % self.p) |
---|
143 | v = v % self.q |
---|
144 | if v==r: |
---|
145 | return 1 |
---|
146 | return 0 |
---|
147 | |
---|
148 | def size(self): |
---|
149 | "Return the maximum number of bits that can be handled by this key." |
---|
150 | return 160 |
---|
151 | |
---|
152 | def has_private(self): |
---|
153 | """Return a Boolean denoting whether the object contains |
---|
154 | private components.""" |
---|
155 | return hasattr(self, 'x') |
---|
156 | |
---|
157 | def can_sign(self): |
---|
158 | """Return a Boolean value recording whether this algorithm can generate signatures.""" |
---|
159 | return 1 |
---|
160 | |
---|
161 | def can_encrypt(self): |
---|
162 | """Return a Boolean value recording whether this algorithm can encrypt data.""" |
---|
163 | return 0 |
---|
164 | |
---|
165 | def publickey(self): |
---|
166 | """Return a new key object containing only the public information.""" |
---|
167 | return construct((self.p, self.q, self.g, self.y)) |
---|
168 | |
---|
169 | object = qNEWobj |
---|
170 | |
---|