1 | """ |
---|
2 | Topological sort. |
---|
3 | |
---|
4 | From Tim Peters, see: |
---|
5 | http://mail.python.org/pipermail/python-list/1999-July/006660.html |
---|
6 | |
---|
7 | topsort takes a list of pairs, where each pair (x, y) is taken to |
---|
8 | mean that x <= y wrt some abstract partial ordering. The return |
---|
9 | value is a list, representing a total ordering that respects all |
---|
10 | the input constraints. |
---|
11 | E.g., |
---|
12 | topsort( [(1,2), (3,3)] ) |
---|
13 | may return any of (but nothing other than) |
---|
14 | [3, 1, 2] |
---|
15 | [1, 3, 2] |
---|
16 | [1, 2, 3] |
---|
17 | because those are the permutations of the input elements that |
---|
18 | respect the "1 precedes 2" and "3 precedes 3" input constraints. |
---|
19 | Note that a constraint of the form (x, x) is really just a trick |
---|
20 | to make sure x appears *somewhere* in the output list. |
---|
21 | |
---|
22 | If there's a cycle in the constraints, say |
---|
23 | topsort( [(1,2), (2,1)] ) |
---|
24 | then CycleError is raised, and the exception object supports |
---|
25 | many methods to help analyze and break the cycles. This requires |
---|
26 | a good deal more code than topsort itself! |
---|
27 | """ |
---|
28 | |
---|
29 | from exceptions import Exception |
---|
30 | |
---|
31 | class CycleError(Exception): |
---|
32 | def __init__(self, sofar, numpreds, succs): |
---|
33 | Exception.__init__(self, "cycle in constraints", |
---|
34 | sofar, numpreds, succs) |
---|
35 | self.preds = None |
---|
36 | |
---|
37 | # return as much of the total ordering as topsort was able to |
---|
38 | # find before it hit a cycle |
---|
39 | def get_partial(self): |
---|
40 | return self[1] |
---|
41 | |
---|
42 | # return remaining elt -> count of predecessors map |
---|
43 | def get_pred_counts(self): |
---|
44 | return self[2] |
---|
45 | |
---|
46 | # return remaining elt -> list of successors map |
---|
47 | def get_succs(self): |
---|
48 | return self[3] |
---|
49 | |
---|
50 | # return remaining elements (== those that don't appear in |
---|
51 | # get_partial()) |
---|
52 | def get_elements(self): |
---|
53 | return self.get_pred_counts().keys() |
---|
54 | |
---|
55 | # Return a list of pairs representing the full state of what's |
---|
56 | # remaining (if you pass this list back to topsort, it will raise |
---|
57 | # CycleError again, and if you invoke get_pairlist on *that* |
---|
58 | # exception object, the result will be isomorphic to *this* |
---|
59 | # invocation of get_pairlist). |
---|
60 | # The idea is that you can use pick_a_cycle to find a cycle, |
---|
61 | # through some means or another pick an (x,y) pair in the cycle |
---|
62 | # you no longer want to respect, then remove that pair from the |
---|
63 | # output of get_pairlist and try topsort again. |
---|
64 | def get_pairlist(self): |
---|
65 | succs = self.get_succs() |
---|
66 | answer = [] |
---|
67 | for x in self.get_elements(): |
---|
68 | if succs.has_key(x): |
---|
69 | for y in succs[x]: |
---|
70 | answer.append( (x, y) ) |
---|
71 | else: |
---|
72 | # make sure x appears in topsort's output! |
---|
73 | answer.append( (x, x) ) |
---|
74 | return answer |
---|
75 | |
---|
76 | # return remaining elt -> list of predecessors map |
---|
77 | def get_preds(self): |
---|
78 | if self.preds is not None: |
---|
79 | return self.preds |
---|
80 | self.preds = preds = {} |
---|
81 | remaining_elts = self.get_elements() |
---|
82 | for x in remaining_elts: |
---|
83 | preds[x] = [] |
---|
84 | succs = self.get_succs() |
---|
85 | |
---|
86 | for x in remaining_elts: |
---|
87 | if succs.has_key(x): |
---|
88 | for y in succs[x]: |
---|
89 | preds[y].append(x) |
---|
90 | |
---|
91 | if __debug__: |
---|
92 | for x in remaining_elts: |
---|
93 | assert len(preds[x]) > 0 |
---|
94 | return preds |
---|
95 | |
---|
96 | # return a cycle [x, ..., x] at random |
---|
97 | def pick_a_cycle(self): |
---|
98 | remaining_elts = self.get_elements() |
---|
99 | |
---|
100 | # We know that everything in remaining_elts has a predecessor, |
---|
101 | # but don't know that everything in it has a successor. So |
---|
102 | # crawling forward over succs may hit a dead end. Instead we |
---|
103 | # crawl backward over the preds until we hit a duplicate, then |
---|
104 | # reverse the path. |
---|
105 | preds = self.get_preds() |
---|
106 | from random import choice |
---|
107 | x = choice(remaining_elts) |
---|
108 | answer = [] |
---|
109 | index = {} |
---|
110 | in_answer = index.has_key |
---|
111 | while not in_answer(x): |
---|
112 | index[x] = len(answer) # index of x in answer |
---|
113 | answer.append(x) |
---|
114 | x = choice(preds[x]) |
---|
115 | answer.append(x) |
---|
116 | answer = answer[index[x]:] |
---|
117 | answer.reverse() |
---|
118 | return answer |
---|
119 | |
---|
120 | def topsort(pairlist): |
---|
121 | numpreds = {} # elt -> # of predecessors |
---|
122 | successors = {} # elt -> list of successors |
---|
123 | for first, second in pairlist: |
---|
124 | # make sure every elt is a key in numpreds |
---|
125 | if not numpreds.has_key(first): |
---|
126 | numpreds[first] = 0 |
---|
127 | if not numpreds.has_key(second): |
---|
128 | numpreds[second] = 0 |
---|
129 | |
---|
130 | # if they're the same, there's no real dependence |
---|
131 | if first == second: |
---|
132 | continue |
---|
133 | |
---|
134 | # since first < second, second gains a pred ... |
---|
135 | numpreds[second] = numpreds[second] + 1 |
---|
136 | |
---|
137 | # ... and first gains a succ |
---|
138 | if successors.has_key(first): |
---|
139 | successors[first].append(second) |
---|
140 | else: |
---|
141 | successors[first] = [second] |
---|
142 | |
---|
143 | # suck up everything without a predecessor |
---|
144 | answer = filter(lambda x, numpreds=numpreds: numpreds[x] == 0, |
---|
145 | numpreds.keys()) |
---|
146 | |
---|
147 | # for everything in answer, knock down the pred count on |
---|
148 | # its successors; note that answer grows *in* the loop |
---|
149 | for x in answer: |
---|
150 | assert numpreds[x] == 0 |
---|
151 | del numpreds[x] |
---|
152 | if successors.has_key(x): |
---|
153 | for y in successors[x]: |
---|
154 | numpreds[y] = numpreds[y] - 1 |
---|
155 | if numpreds[y] == 0: |
---|
156 | answer.append(y) |
---|
157 | # following "del" isn't needed; just makes |
---|
158 | # CycleError details easier to grasp |
---|
159 | del successors[x] |
---|
160 | |
---|
161 | if numpreds: |
---|
162 | # everything in numpreds has at least one predecessor -> |
---|
163 | # there's a cycle |
---|
164 | if __debug__: |
---|
165 | for x in numpreds.keys(): |
---|
166 | assert numpreds[x] > 0 |
---|
167 | raise CycleError(answer, numpreds, successors) |
---|
168 | return answer |
---|
169 | |
---|
170 | def topsort_levels(pairlist): |
---|
171 | numpreds = {} # elt -> # of predecessors |
---|
172 | successors = {} # elt -> list of successors |
---|
173 | for first, second in pairlist: |
---|
174 | # make sure every elt is a key in numpreds |
---|
175 | if not numpreds.has_key(first): |
---|
176 | numpreds[first] = 0 |
---|
177 | if not numpreds.has_key(second): |
---|
178 | numpreds[second] = 0 |
---|
179 | |
---|
180 | # if they're the same, there's no real dependence |
---|
181 | if first == second: |
---|
182 | continue |
---|
183 | |
---|
184 | # since first < second, second gains a pred ... |
---|
185 | numpreds[second] = numpreds[second] + 1 |
---|
186 | |
---|
187 | # ... and first gains a succ |
---|
188 | if successors.has_key(first): |
---|
189 | successors[first].append(second) |
---|
190 | else: |
---|
191 | successors[first] = [second] |
---|
192 | |
---|
193 | answer = [] |
---|
194 | |
---|
195 | while 1: |
---|
196 | # Suck up everything without a predecessor. |
---|
197 | levparents = [x for x in numpreds.keys() if numpreds[x] == 0] |
---|
198 | if not levparents: |
---|
199 | break |
---|
200 | answer.append( levparents ) |
---|
201 | for levparent in levparents: |
---|
202 | del numpreds[levparent] |
---|
203 | if successors.has_key(levparent): |
---|
204 | for levparentsucc in successors[levparent]: |
---|
205 | numpreds[levparentsucc] -= 1 |
---|
206 | del successors[levparent] |
---|
207 | |
---|
208 | if numpreds: |
---|
209 | # Everything in num_parents has at least one child -> |
---|
210 | # there's a cycle. |
---|
211 | raise CycleError( answer, numpreds, successors ) |
---|
212 | |
---|
213 | return answer |
---|