| 1 | """ | 
|---|
| 2 | Topological sort. | 
|---|
| 3 |  | 
|---|
| 4 | From Tim Peters, see: | 
|---|
| 5 | http://mail.python.org/pipermail/python-list/1999-July/006660.html | 
|---|
| 6 |  | 
|---|
| 7 | topsort takes a list of pairs, where each pair (x, y) is taken to | 
|---|
| 8 | mean that x <= y wrt some abstract partial ordering.  The return | 
|---|
| 9 | value is a list, representing a total ordering that respects all | 
|---|
| 10 | the input constraints. | 
|---|
| 11 | E.g., | 
|---|
| 12 | topsort( [(1,2), (3,3)] ) | 
|---|
| 13 | may return any of (but nothing other than) | 
|---|
| 14 | [3, 1, 2] | 
|---|
| 15 | [1, 3, 2] | 
|---|
| 16 | [1, 2, 3] | 
|---|
| 17 | because those are the permutations of the input elements that | 
|---|
| 18 | respect the "1 precedes 2" and "3 precedes 3" input constraints. | 
|---|
| 19 | Note that a constraint of the form (x, x) is really just a trick | 
|---|
| 20 | to make sure x appears *somewhere* in the output list. | 
|---|
| 21 |  | 
|---|
| 22 | If there's a cycle in the constraints, say | 
|---|
| 23 | topsort( [(1,2), (2,1)] ) | 
|---|
| 24 | then CycleError is raised, and the exception object supports | 
|---|
| 25 | many methods to help analyze and break the cycles.  This requires | 
|---|
| 26 | a good deal more code than topsort itself! | 
|---|
| 27 | """ | 
|---|
| 28 |  | 
|---|
| 29 | from exceptions import Exception | 
|---|
| 30 |  | 
|---|
| 31 | class CycleError(Exception): | 
|---|
| 32 | def __init__(self, sofar, numpreds, succs): | 
|---|
| 33 | Exception.__init__(self, "cycle in constraints", | 
|---|
| 34 | sofar, numpreds, succs) | 
|---|
| 35 | self.preds = None | 
|---|
| 36 |  | 
|---|
| 37 | # return as much of the total ordering as topsort was able to | 
|---|
| 38 | # find before it hit a cycle | 
|---|
| 39 | def get_partial(self): | 
|---|
| 40 | return self[1] | 
|---|
| 41 |  | 
|---|
| 42 | # return remaining elt -> count of predecessors map | 
|---|
| 43 | def get_pred_counts(self): | 
|---|
| 44 | return self[2] | 
|---|
| 45 |  | 
|---|
| 46 | # return remaining elt -> list of successors map | 
|---|
| 47 | def get_succs(self): | 
|---|
| 48 | return self[3] | 
|---|
| 49 |  | 
|---|
| 50 | # return remaining elements (== those that don't appear in | 
|---|
| 51 | # get_partial()) | 
|---|
| 52 | def get_elements(self): | 
|---|
| 53 | return self.get_pred_counts().keys() | 
|---|
| 54 |  | 
|---|
| 55 | # Return a list of pairs representing the full state of what's | 
|---|
| 56 | # remaining (if you pass this list back to topsort, it will raise | 
|---|
| 57 | # CycleError again, and if you invoke get_pairlist on *that* | 
|---|
| 58 | # exception object, the result will be isomorphic to *this* | 
|---|
| 59 | # invocation of get_pairlist). | 
|---|
| 60 | # The idea is that you can use pick_a_cycle to find a cycle, | 
|---|
| 61 | # through some means or another pick an (x,y) pair in the cycle | 
|---|
| 62 | # you no longer want to respect, then remove that pair from the | 
|---|
| 63 | # output of get_pairlist and try topsort again. | 
|---|
| 64 | def get_pairlist(self): | 
|---|
| 65 | succs = self.get_succs() | 
|---|
| 66 | answer = [] | 
|---|
| 67 | for x in self.get_elements(): | 
|---|
| 68 | if succs.has_key(x): | 
|---|
| 69 | for y in succs[x]: | 
|---|
| 70 | answer.append( (x, y) ) | 
|---|
| 71 | else: | 
|---|
| 72 | # make sure x appears in topsort's output! | 
|---|
| 73 | answer.append( (x, x) ) | 
|---|
| 74 | return answer | 
|---|
| 75 |  | 
|---|
| 76 | # return remaining elt -> list of predecessors map | 
|---|
| 77 | def get_preds(self): | 
|---|
| 78 | if self.preds is not None: | 
|---|
| 79 | return self.preds | 
|---|
| 80 | self.preds = preds = {} | 
|---|
| 81 | remaining_elts = self.get_elements() | 
|---|
| 82 | for x in remaining_elts: | 
|---|
| 83 | preds[x] = [] | 
|---|
| 84 | succs = self.get_succs() | 
|---|
| 85 |  | 
|---|
| 86 | for x in remaining_elts: | 
|---|
| 87 | if succs.has_key(x): | 
|---|
| 88 | for y in succs[x]: | 
|---|
| 89 | preds[y].append(x) | 
|---|
| 90 |  | 
|---|
| 91 | if __debug__: | 
|---|
| 92 | for x in remaining_elts: | 
|---|
| 93 | assert len(preds[x]) > 0 | 
|---|
| 94 | return preds | 
|---|
| 95 |  | 
|---|
| 96 | # return a cycle [x, ..., x] at random | 
|---|
| 97 | def pick_a_cycle(self): | 
|---|
| 98 | remaining_elts = self.get_elements() | 
|---|
| 99 |  | 
|---|
| 100 | # We know that everything in remaining_elts has a predecessor, | 
|---|
| 101 | # but don't know that everything in it has a successor.  So | 
|---|
| 102 | # crawling forward over succs may hit a dead end.  Instead we | 
|---|
| 103 | # crawl backward over the preds until we hit a duplicate, then | 
|---|
| 104 | # reverse the path. | 
|---|
| 105 | preds = self.get_preds() | 
|---|
| 106 | from random import choice | 
|---|
| 107 | x = choice(remaining_elts) | 
|---|
| 108 | answer = [] | 
|---|
| 109 | index = {} | 
|---|
| 110 | in_answer = index.has_key | 
|---|
| 111 | while not in_answer(x): | 
|---|
| 112 | index[x] = len(answer) # index of x in answer | 
|---|
| 113 | answer.append(x) | 
|---|
| 114 | x = choice(preds[x]) | 
|---|
| 115 | answer.append(x) | 
|---|
| 116 | answer = answer[index[x]:] | 
|---|
| 117 | answer.reverse() | 
|---|
| 118 | return answer | 
|---|
| 119 |  | 
|---|
| 120 | def topsort(pairlist): | 
|---|
| 121 | numpreds = {}   # elt -> # of predecessors | 
|---|
| 122 | successors = {} # elt -> list of successors | 
|---|
| 123 | for first, second in pairlist: | 
|---|
| 124 | # make sure every elt is a key in numpreds | 
|---|
| 125 | if not numpreds.has_key(first): | 
|---|
| 126 | numpreds[first] = 0 | 
|---|
| 127 | if not numpreds.has_key(second): | 
|---|
| 128 | numpreds[second] = 0 | 
|---|
| 129 |  | 
|---|
| 130 | # if they're the same, there's no real dependence | 
|---|
| 131 | if first == second: | 
|---|
| 132 | continue | 
|---|
| 133 |  | 
|---|
| 134 | # since first < second, second gains a pred ... | 
|---|
| 135 | numpreds[second] = numpreds[second] + 1 | 
|---|
| 136 |  | 
|---|
| 137 | # ... and first gains a succ | 
|---|
| 138 | if successors.has_key(first): | 
|---|
| 139 | successors[first].append(second) | 
|---|
| 140 | else: | 
|---|
| 141 | successors[first] = [second] | 
|---|
| 142 |  | 
|---|
| 143 | # suck up everything without a predecessor | 
|---|
| 144 | answer = filter(lambda x, numpreds=numpreds: numpreds[x] == 0, | 
|---|
| 145 | numpreds.keys()) | 
|---|
| 146 |  | 
|---|
| 147 | # for everything in answer, knock down the pred count on | 
|---|
| 148 | # its successors; note that answer grows *in* the loop | 
|---|
| 149 | for x in answer: | 
|---|
| 150 | assert numpreds[x] == 0 | 
|---|
| 151 | del numpreds[x] | 
|---|
| 152 | if successors.has_key(x): | 
|---|
| 153 | for y in successors[x]: | 
|---|
| 154 | numpreds[y] = numpreds[y] - 1 | 
|---|
| 155 | if numpreds[y] == 0: | 
|---|
| 156 | answer.append(y) | 
|---|
| 157 | # following "del" isn't needed; just makes | 
|---|
| 158 | # CycleError details easier to grasp | 
|---|
| 159 | del successors[x] | 
|---|
| 160 |  | 
|---|
| 161 | if numpreds: | 
|---|
| 162 | # everything in numpreds has at least one predecessor -> | 
|---|
| 163 | # there's a cycle | 
|---|
| 164 | if __debug__: | 
|---|
| 165 | for x in numpreds.keys(): | 
|---|
| 166 | assert numpreds[x] > 0 | 
|---|
| 167 | raise CycleError(answer, numpreds, successors) | 
|---|
| 168 | return answer | 
|---|
| 169 |  | 
|---|
| 170 | def topsort_levels(pairlist): | 
|---|
| 171 | numpreds = {}   # elt -> # of predecessors | 
|---|
| 172 | successors = {} # elt -> list of successors | 
|---|
| 173 | for first, second in pairlist: | 
|---|
| 174 | # make sure every elt is a key in numpreds | 
|---|
| 175 | if not numpreds.has_key(first): | 
|---|
| 176 | numpreds[first] = 0 | 
|---|
| 177 | if not numpreds.has_key(second): | 
|---|
| 178 | numpreds[second] = 0 | 
|---|
| 179 |  | 
|---|
| 180 | # if they're the same, there's no real dependence | 
|---|
| 181 | if first == second: | 
|---|
| 182 | continue | 
|---|
| 183 |  | 
|---|
| 184 | # since first < second, second gains a pred ... | 
|---|
| 185 | numpreds[second] = numpreds[second] + 1 | 
|---|
| 186 |  | 
|---|
| 187 | # ... and first gains a succ | 
|---|
| 188 | if successors.has_key(first): | 
|---|
| 189 | successors[first].append(second) | 
|---|
| 190 | else: | 
|---|
| 191 | successors[first] = [second] | 
|---|
| 192 |  | 
|---|
| 193 | answer = [] | 
|---|
| 194 |  | 
|---|
| 195 | while 1: | 
|---|
| 196 | # Suck up everything without a predecessor. | 
|---|
| 197 | levparents = [x for x in numpreds.keys() if numpreds[x] == 0] | 
|---|
| 198 | if not levparents: | 
|---|
| 199 | break | 
|---|
| 200 | answer.append( levparents ) | 
|---|
| 201 | for levparent in levparents: | 
|---|
| 202 | del numpreds[levparent] | 
|---|
| 203 | if successors.has_key(levparent): | 
|---|
| 204 | for levparentsucc in successors[levparent]: | 
|---|
| 205 | numpreds[levparentsucc] -= 1 | 
|---|
| 206 | del successors[levparent] | 
|---|
| 207 |  | 
|---|
| 208 | if numpreds: | 
|---|
| 209 | # Everything in num_parents has at least one child -> | 
|---|
| 210 | # there's a cycle. | 
|---|
| 211 | raise CycleError( answer, numpreds, successors ) | 
|---|
| 212 |  | 
|---|
| 213 | return answer | 
|---|