1 | #!/usr/bin/perl -w |
---|
2 | |
---|
3 | use warnings; |
---|
4 | use IO::Handle; |
---|
5 | |
---|
6 | $usage = "execute_dwt_cor_aVb_all.pl [TABULAR.in] [TABULAR.in] [TABULAR.out] [PDF.out] \n"; |
---|
7 | die $usage unless @ARGV == 4; |
---|
8 | |
---|
9 | #get the input arguments |
---|
10 | my $firstInputFile = $ARGV[0]; |
---|
11 | my $secondInputFile = $ARGV[1]; |
---|
12 | my $firstOutputFile = $ARGV[2]; |
---|
13 | my $secondOutputFile = $ARGV[3]; |
---|
14 | |
---|
15 | open (INPUT1, "<", $firstInputFile) || die("Could not open file $firstInputFile \n"); |
---|
16 | open (INPUT2, "<", $secondInputFile) || die("Could not open file $secondInputFile \n"); |
---|
17 | open (OUTPUT1, ">", $firstOutputFile) || die("Could not open file $firstOutputFile \n"); |
---|
18 | open (OUTPUT2, ">", $secondOutputFile) || die("Could not open file $secondOutputFile \n"); |
---|
19 | open (ERROR, ">", "error.txt") or die ("Could not open file error.txt \n"); |
---|
20 | |
---|
21 | #save all error messages into the error file $errorFile using the error file handle ERROR |
---|
22 | STDERR -> fdopen( \*ERROR, "w" ) or die ("Could not direct errors to the error file error.txt \n"); |
---|
23 | |
---|
24 | print "There are two input data files: \n"; |
---|
25 | print "The input data file is: $firstInputFile \n"; |
---|
26 | print "The control data file is: $secondInputFile \n"; |
---|
27 | |
---|
28 | # IvC test |
---|
29 | $test = "cor_aVb_all"; |
---|
30 | |
---|
31 | # construct an R script to implement the IvC test |
---|
32 | print "\n"; |
---|
33 | |
---|
34 | $r_script = "get_dwt_cor_aVa_test.r"; |
---|
35 | print "$r_script \n"; |
---|
36 | |
---|
37 | |
---|
38 | # R script |
---|
39 | open(Rcmd, ">", "$r_script") or die "Cannot open $r_script \n\n"; |
---|
40 | print Rcmd " |
---|
41 | ################################################################################# |
---|
42 | # code to do all correlation tests of form: motif(a) vs. motif(b) |
---|
43 | # add code to create null bands by permuting the original data series |
---|
44 | # generate plots and table matrix of correlation coefficients including p-values |
---|
45 | ################################################################################# |
---|
46 | library(\"Rwave\"); |
---|
47 | library(\"wavethresh\"); |
---|
48 | library(\"waveslim\"); |
---|
49 | |
---|
50 | options(echo = FALSE) |
---|
51 | |
---|
52 | # normalize data |
---|
53 | norm <- function(data){ |
---|
54 | v <- (data - mean(data))/sd(data); |
---|
55 | if(sum(is.na(v)) >= 1){ |
---|
56 | v <- data; |
---|
57 | } |
---|
58 | return(v); |
---|
59 | } |
---|
60 | |
---|
61 | dwt_cor <- function(data.short, names.short, data.long, names.long, test, pdf, table, filter = 4, bc = \"symmetric\", method = \"kendall\", wf = \"haar\", boundary = \"reflection\") { |
---|
62 | print(test); |
---|
63 | print(pdf); |
---|
64 | print(table); |
---|
65 | |
---|
66 | pdf(file = pdf); |
---|
67 | final_pvalue = NULL; |
---|
68 | title = NULL; |
---|
69 | |
---|
70 | short.levels <- wd(data.short[, 1], filter.number = filter, bc = bc)\$nlevels; |
---|
71 | title <- c(\"motif1\", \"motif2\"); |
---|
72 | for (i in 1:short.levels){ |
---|
73 | title <- c(title, paste(i, \"cor\", sep = \"_\"), paste(i, \"pval\", sep = \"_\")); |
---|
74 | } |
---|
75 | print(title); |
---|
76 | |
---|
77 | # normalize the raw data |
---|
78 | data.short <- apply(data.short, 2, norm); |
---|
79 | data.long <- apply(data.long, 2, norm); |
---|
80 | |
---|
81 | # loop to compare a vs b |
---|
82 | for(i in 1:length(names.short)){ |
---|
83 | for(j in 1:length(names.long)){ |
---|
84 | if(i >= j){ |
---|
85 | next; |
---|
86 | } |
---|
87 | else { |
---|
88 | # Kendall Tau |
---|
89 | # DWT wavelet correlation function |
---|
90 | # include significance to compare |
---|
91 | wave1.dwt = wave2.dwt = NULL; |
---|
92 | tau.dwt = NULL; |
---|
93 | out = NULL; |
---|
94 | |
---|
95 | print(names.short[i]); |
---|
96 | print(names.long[j]); |
---|
97 | |
---|
98 | # need exit if not comparing motif(a) vs motif(a) |
---|
99 | if (names.short[i] == names.long[j]){ |
---|
100 | stop(paste(\"motif\", names.short[i], \"is the same as\", names.long[j], sep = \" \")); |
---|
101 | } |
---|
102 | else { |
---|
103 | wave1.dwt <- dwt(data.short[, i], wf = wf, short.levels, boundary = boundary); |
---|
104 | wave2.dwt <- dwt(data.long[, j], wf = wf, short.levels, boundary = boundary); |
---|
105 | tau.dwt <-vector(length = short.levels) |
---|
106 | |
---|
107 | # perform cor test on wavelet coefficients per scale |
---|
108 | for(level in 1:short.levels){ |
---|
109 | w1_level = w2_level = NULL; |
---|
110 | w1_level <- (wave1.dwt[[level]]); |
---|
111 | w2_level <- (wave2.dwt[[level]]); |
---|
112 | tau.dwt[level] <- cor.test(w1_level, w2_level, method = method)\$estimate; |
---|
113 | } |
---|
114 | |
---|
115 | # CI bands by permutation of time series |
---|
116 | feature1 = feature2 = NULL; |
---|
117 | feature1 = data.short[, i]; |
---|
118 | feature2 = data.long[, j]; |
---|
119 | null = results = med = NULL; |
---|
120 | cor_25 = cor_975 = NULL; |
---|
121 | |
---|
122 | for (k in 1:1000) { |
---|
123 | nk_1 = nk_2 = NULL; |
---|
124 | null.levels = NULL; |
---|
125 | cor = NULL; |
---|
126 | null_wave1 = null_wave2 = NULL; |
---|
127 | |
---|
128 | nk_1 <- sample(feature1, length(feature1), replace = FALSE); |
---|
129 | nk_2 <- sample(feature2, length(feature2), replace = FALSE); |
---|
130 | null.levels <- wd(nk_1, filter.number = filter, bc = bc)\$nlevels; |
---|
131 | cor <- vector(length = null.levels); |
---|
132 | null_wave1 <- dwt(nk_1, wf = wf, short.levels, boundary = boundary); |
---|
133 | null_wave2 <- dwt(nk_2, wf = wf, short.levels, boundary = boundary); |
---|
134 | |
---|
135 | for(level in 1:null.levels){ |
---|
136 | null_level1 = null_level2 = NULL; |
---|
137 | null_level1 <- (null_wave1[[level]]); |
---|
138 | null_level2 <- (null_wave2[[level]]); |
---|
139 | cor[level] <- cor.test(null_level1, null_level2, method = method)\$estimate; |
---|
140 | } |
---|
141 | null = rbind(null, cor); |
---|
142 | } |
---|
143 | |
---|
144 | null <- apply(null, 2, sort, na.last = TRUE); |
---|
145 | cor_25 <- null[25, ]; |
---|
146 | cor_975 <- null[975, ]; |
---|
147 | med <- (apply(null, 2, median, na.rm = TRUE)); |
---|
148 | |
---|
149 | # plot |
---|
150 | results <- cbind(tau.dwt, cor_25, cor_975); |
---|
151 | matplot(results, type = \"b\", pch = \"*\", lty = 1, col = c(1, 2, 2), ylim = c(-1, 1), xlab = \"Wavelet Scale\", ylab = \"Wavelet Correlation Kendall's Tau\", main = (paste(test, names.short[i], \"vs.\", names.long[j], sep = \" \")), cex.main = 0.75); |
---|
152 | abline(h = 0); |
---|
153 | |
---|
154 | # get pvalues by comparison to null distribution |
---|
155 | ### modify pval calculation for error type II of T test #### |
---|
156 | out <- c(names.short[i],names.long[j]); |
---|
157 | for (m in 1:length(tau.dwt)){ |
---|
158 | print(m); |
---|
159 | print(tau.dwt[m]); |
---|
160 | out <- c(out, format(tau.dwt[m], digits = 3)); |
---|
161 | pv = NULL; |
---|
162 | if(is.na(tau.dwt[m])){ |
---|
163 | pv <- \"NA\"; |
---|
164 | } |
---|
165 | else{ |
---|
166 | if (tau.dwt[m] >= med[m]){ |
---|
167 | # R tail test |
---|
168 | pv <- (length(which(null[, m] >= tau.dwt[m])))/(length(na.exclude(null[, m]))); |
---|
169 | } |
---|
170 | else{ |
---|
171 | if (tau.dwt[m] < med[m]){ |
---|
172 | # L tail test |
---|
173 | pv <- (length(which(null[, m] <= tau.dwt[m])))/(length(na.exclude(null[, m]))); |
---|
174 | } |
---|
175 | } |
---|
176 | } |
---|
177 | out <- c(out, pv); |
---|
178 | print(pv); |
---|
179 | } |
---|
180 | final_pvalue <-rbind(final_pvalue, out); |
---|
181 | print(out); |
---|
182 | } |
---|
183 | } |
---|
184 | } |
---|
185 | } |
---|
186 | colnames(final_pvalue) <- title; |
---|
187 | write.table(final_pvalue, file = table, sep = \"\\t\", quote = FALSE, row.names = FALSE) |
---|
188 | dev.off(); |
---|
189 | }\n"; |
---|
190 | |
---|
191 | print Rcmd " |
---|
192 | # execute |
---|
193 | # read in data |
---|
194 | |
---|
195 | inputData1 = inputData2 = NULL; |
---|
196 | inputData.short1 = inputData.short2 = NULL; |
---|
197 | inputDataNames.short1 = inputDataNames.short2 = NULL; |
---|
198 | |
---|
199 | inputData1 <- read.delim(\"$firstInputFile\"); |
---|
200 | inputData.short1 <- inputData1[, +c(1:ncol(inputData1))]; |
---|
201 | inputDataNames.short1 <- colnames(inputData.short1); |
---|
202 | |
---|
203 | inputData2 <- read.delim(\"$secondInputFile\"); |
---|
204 | inputData.short2 <- inputData2[, +c(1:ncol(inputData2))]; |
---|
205 | inputDataNames.short2 <- colnames(inputData.short2); |
---|
206 | |
---|
207 | # cor test for motif(a) in inputData1 vs motif(b) in inputData2 |
---|
208 | dwt_cor(inputData.short1, inputDataNames.short1, inputData.short2, inputDataNames.short2, test = \"$test\", pdf = \"$secondOutputFile\", table = \"$firstOutputFile\"); |
---|
209 | print (\"done with the correlation test\"); |
---|
210 | |
---|
211 | #eof\n"; |
---|
212 | close Rcmd; |
---|
213 | |
---|
214 | system("echo \"wavelet IvC test started on \`hostname\` at \`date\`\"\n"); |
---|
215 | system("R --no-restore --no-save --no-readline < $r_script > $r_script.out\n"); |
---|
216 | system("echo \"wavelet IvC test ended on \`hostname\` at \`date\`\"\n"); |
---|
217 | |
---|
218 | #close the input and output and error files |
---|
219 | close(ERROR); |
---|
220 | close(OUTPUT2); |
---|
221 | close(OUTPUT1); |
---|
222 | close(INPUT2); |
---|
223 | close(INPUT1); |
---|