1 | #Dan Blankenberg |
---|
2 | import sys |
---|
3 | from galaxy_utils.sequence.fastq import fastqReader, fastqAggregator |
---|
4 | |
---|
5 | VALID_NUCLEOTIDES = [ 'A', 'C', 'G', 'T', 'N' ] |
---|
6 | VALID_COLOR_SPACE = map( str, range( 7 ) ) + [ '.' ] |
---|
7 | SUMMARY_STAT_ORDER = ['read_count', 'min_score', 'max_score', 'sum_score', 'mean_score', 'q1', 'med_score', 'q3', 'iqr', 'left_whisker', 'right_whisker' ] |
---|
8 | |
---|
9 | def main(): |
---|
10 | input_filename = sys.argv[1] |
---|
11 | output_filename = sys.argv[2] |
---|
12 | input_type = sys.argv[3] or 'sanger' |
---|
13 | |
---|
14 | aggregator = fastqAggregator() |
---|
15 | num_reads = None |
---|
16 | fastq_read = None |
---|
17 | for num_reads, fastq_read in enumerate( fastqReader( open( input_filename ), format = input_type ) ): |
---|
18 | aggregator.consume_read( fastq_read ) |
---|
19 | out = open( output_filename, 'wb' ) |
---|
20 | valid_nucleotides = VALID_NUCLEOTIDES |
---|
21 | if fastq_read: |
---|
22 | if fastq_read.sequence_space == 'base': |
---|
23 | out.write( '#column\tcount\tmin\tmax\tsum\tmean\tQ1\tmed\tQ3\tIQR\tlW\trW\toutliers\tA_Count\tC_Count\tG_Count\tT_Count\tN_Count\tother_bases\tother_base_count\n' ) |
---|
24 | else: |
---|
25 | out.write( '#column\tcount\tmin\tmax\tsum\tmean\tQ1\tmed\tQ3\tIQR\tlW\trW\toutliers\t0_Count\t1_Count\t2_Count\t3_Count\t4_Count\t5_Count\t6_Count\t._Count\tother_bases\tother_base_count\n' ) |
---|
26 | valid_nucleotides = VALID_COLOR_SPACE |
---|
27 | for i in range( aggregator.get_max_read_length() ): |
---|
28 | column_stats = aggregator.get_summary_statistics_for_column( i ) |
---|
29 | out.write( '%i\t' % ( i + 1 ) ) |
---|
30 | out.write( '%s\t' * len( SUMMARY_STAT_ORDER ) % tuple( [ column_stats[ key ] for key in SUMMARY_STAT_ORDER ] ) ) |
---|
31 | out.write( '%s\t' % ','.join( map( str, column_stats['outliers'] ) ) ) |
---|
32 | base_counts = aggregator.get_base_counts_for_column( i ) |
---|
33 | for nuc in valid_nucleotides: |
---|
34 | out.write( "%s\t" % base_counts.get( nuc, 0 ) ) |
---|
35 | extra_nucs = sorted( [ nuc for nuc in base_counts.keys() if nuc not in valid_nucleotides ] ) |
---|
36 | out.write( "%s\t%s\n" % ( ','.join( extra_nucs ), ','.join( str( base_counts[nuc] ) for nuc in extra_nucs ) ) ) |
---|
37 | out.close() |
---|
38 | if num_reads is None: |
---|
39 | print "No valid fastq reads could be processed." |
---|
40 | else: |
---|
41 | print "%i fastq reads were processed." % ( num_reads + 1 ) |
---|
42 | print "Based upon quality values and sequence characters, the input data is valid for: %s" % ( ", ".join( aggregator.get_valid_formats() ) or "None" ) |
---|
43 | ascii_range = aggregator.get_ascii_range() |
---|
44 | decimal_range = aggregator.get_decimal_range() |
---|
45 | print "Input ASCII range: %s(%i) - %s(%i)" % ( repr( ascii_range[0] ), ord( ascii_range[0] ), repr( ascii_range[1] ), ord( ascii_range[1] ) ) #print using repr, since \x00 (null) causes info truncation in galaxy when printed |
---|
46 | print "Input decimal range: %i - %i" % ( decimal_range[0], decimal_range[1] ) |
---|
47 | |
---|
48 | if __name__ == "__main__": main() |
---|