1 | <tool id="hgv_pass" name="PASS" version="1.0.0"> |
---|
2 | <description>significant transcription factor binding sites from ChIP data</description> |
---|
3 | |
---|
4 | <command interpreter="bash"> |
---|
5 | pass_wrapper.sh "$input" "$min_window" "$max_window" "$false_num" "$output" |
---|
6 | </command> |
---|
7 | |
---|
8 | <inputs> |
---|
9 | <param format="gff" name="input" type="data" label="Dataset"/> |
---|
10 | <param name="min_window" label="Smallest window size (by # of probes)" type="integer" value="2" /> |
---|
11 | <param name="max_window" label="Largest window size (by # of probes)" type="integer" value="6" /> |
---|
12 | <param name="false_num" label="Expected total number of false positive intervals to be called" type="float" value="5.0" help="N.B.: this is a <em>count</em>, not a rate." /> |
---|
13 | </inputs> |
---|
14 | |
---|
15 | <outputs> |
---|
16 | <data format="tabular" name="output" /> |
---|
17 | </outputs> |
---|
18 | |
---|
19 | <requirements> |
---|
20 | <requirement type="binary">pass</requirement> |
---|
21 | <requirement type="binary">sed</requirement> |
---|
22 | </requirements> |
---|
23 | |
---|
24 | <!-- we need to be able to set the seed for the random number generator |
---|
25 | <tests> |
---|
26 | <test> |
---|
27 | <param name="input" ftype="gff" value="pass_input.gff"/> |
---|
28 | <param name="min_window" value="2"/> |
---|
29 | <param name="max_window" value="6"/> |
---|
30 | <param name="false_num" value="5"/> |
---|
31 | <output name="output" file="pass_output.tab"/> |
---|
32 | </test> |
---|
33 | </tests> |
---|
34 | --> |
---|
35 | |
---|
36 | <help> |
---|
37 | **Dataset formats** |
---|
38 | |
---|
39 | The input is in GFF_ format, and the output is tabular_. |
---|
40 | (`Dataset missing?`_) |
---|
41 | |
---|
42 | .. _GFF: ./static/formatHelp.html#gff |
---|
43 | .. _tabular: ./static/formatHelp.html#tab |
---|
44 | .. _Dataset missing?: ./static/formatHelp.html |
---|
45 | |
---|
46 | ----- |
---|
47 | |
---|
48 | **What it does** |
---|
49 | |
---|
50 | PASS (Poisson Approximation for Statistical Significance) detects |
---|
51 | significant transcription factor binding sites in the genome from |
---|
52 | ChIP data. This is probably the only peak-calling method that |
---|
53 | accurately controls the false-positive rate and FDR in ChIP data, |
---|
54 | which is important given the huge discrepancy in results obtained |
---|
55 | from different peak-calling algorithms. At the same time, this |
---|
56 | method achieves a similar or better power than previous methods. |
---|
57 | |
---|
58 | <!-- we don't have wrapper support for the "prior" file yet |
---|
59 | Another unique feature of this method is that it allows varying |
---|
60 | thresholds to be used for peak calling at different genomic |
---|
61 | locations. For example, if a position lies in an open chromatin |
---|
62 | region, is depleted of nucleosome positioning, or a co-binding |
---|
63 | protein has been detected within the neighborhood, then the position |
---|
64 | is more likely to be bound by the target protein of interest, and |
---|
65 | hence a lower threshold will be used to call significant peaks. |
---|
66 | As a result, weak but real binding sites can be detected. |
---|
67 | --> |
---|
68 | |
---|
69 | ----- |
---|
70 | |
---|
71 | **Hints** |
---|
72 | |
---|
73 | - ChIP-Seq data: |
---|
74 | |
---|
75 | If the data is from ChIP-Seq, you need to convert the ChIP-Seq values |
---|
76 | into z-scores before using this program. It is also recommended that |
---|
77 | you group read counts within a neighborhood together, e.g. in tiled |
---|
78 | windows of 30bp. In this way, the ChIP-Seq data will resemble |
---|
79 | ChIP-chip data in format. |
---|
80 | |
---|
81 | - Choosing window size options: |
---|
82 | |
---|
83 | The window size is related to the probe tiling density. For example, |
---|
84 | if the probes are tiled at every 100bp, then setting the smallest |
---|
85 | window = 2 and largest window = 6 is appropriate, because the DNA |
---|
86 | fragment size is around 300-500bp. |
---|
87 | |
---|
88 | ----- |
---|
89 | |
---|
90 | **Example** |
---|
91 | |
---|
92 | - input file:: |
---|
93 | |
---|
94 | chr7 Nimblegen ID 40307603 40307652 1.668944 . . . |
---|
95 | chr7 Nimblegen ID 40307703 40307752 0.8041307 . . . |
---|
96 | chr7 Nimblegen ID 40307808 40307865 -1.089931 . . . |
---|
97 | chr7 Nimblegen ID 40307920 40307969 1.055044 . . . |
---|
98 | chr7 Nimblegen ID 40308005 40308068 2.447853 . . . |
---|
99 | chr7 Nimblegen ID 40308125 40308174 0.1638694 . . . |
---|
100 | chr7 Nimblegen ID 40308223 40308275 -0.04796628 . . . |
---|
101 | chr7 Nimblegen ID 40308318 40308367 0.9335709 . . . |
---|
102 | chr7 Nimblegen ID 40308526 40308584 0.5143972 . . . |
---|
103 | chr7 Nimblegen ID 40308611 40308660 -1.089931 . . . |
---|
104 | etc. |
---|
105 | |
---|
106 | In GFF, a value of dot '.' is used to mean "not applicable". |
---|
107 | |
---|
108 | - output file:: |
---|
109 | |
---|
110 | ID Chr Start End WinSz PeakValue # of FPs FDR |
---|
111 | 1 chr7 40310931 40311266 4 1.663446 0.248817 0.248817 |
---|
112 | |
---|
113 | ----- |
---|
114 | |
---|
115 | **References** |
---|
116 | |
---|
117 | Zhang Y. (2008) |
---|
118 | Poisson approximation for significance in genome-wide ChIP-chip tiling arrays. |
---|
119 | Bioinformatics. 24(24):2825-31. Epub 2008 Oct 25. |
---|
120 | |
---|
121 | Chen KB, Zhang Y. (2010) |
---|
122 | A varying threshold method for ChIP peak calling using multiple sources of information. |
---|
123 | Submitted. |
---|
124 | |
---|
125 | </help> |
---|
126 | </tool> |
---|