1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | """ |
---|
4 | Run kernel CCA using kcca() from R 'kernlab' package |
---|
5 | |
---|
6 | usage: %prog [options] |
---|
7 | -i, --input=i: Input file |
---|
8 | -o, --output1=o: Summary output |
---|
9 | -x, --x_cols=x: X-Variable columns |
---|
10 | -y, --y_cols=y: Y-Variable columns |
---|
11 | -k, --kernel=k: Kernel function |
---|
12 | -f, --features=f: Number of canonical components to return |
---|
13 | -s, --sigma=s: sigma |
---|
14 | -d, --degree=d: degree |
---|
15 | -l, --scale=l: scale |
---|
16 | -t, --offset=t: offset |
---|
17 | -r, --order=r: order |
---|
18 | |
---|
19 | usage: %prog input output1 x_cols y_cols kernel features sigma(or_None) degree(or_None) scale(or_None) offset(or_None) order(or_None) |
---|
20 | """ |
---|
21 | |
---|
22 | from galaxy import eggs |
---|
23 | import sys, string |
---|
24 | from rpy import * |
---|
25 | import numpy |
---|
26 | import pkg_resources; pkg_resources.require( "bx-python" ) |
---|
27 | from bx.cookbook import doc_optparse |
---|
28 | |
---|
29 | |
---|
30 | def stop_err(msg): |
---|
31 | sys.stderr.write(msg) |
---|
32 | sys.exit() |
---|
33 | |
---|
34 | #Parse Command Line |
---|
35 | options, args = doc_optparse.parse( __doc__ ) |
---|
36 | #{'options= kernel': 'rbfdot', 'var_cols': '1,2,3,4', 'degree': 'None', 'output2': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_260.dat', 'output1': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_259.dat', 'scale': 'None', 'offset': 'None', 'input': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_256.dat', 'sigma': '1.0', 'order': 'None'} |
---|
37 | |
---|
38 | infile = options.input |
---|
39 | x_cols = options.x_cols.split(',') |
---|
40 | y_cols = options.y_cols.split(',') |
---|
41 | kernel = options.kernel |
---|
42 | outfile = options.output1 |
---|
43 | ncomps = int(options.features) |
---|
44 | fout = open(outfile,'w') |
---|
45 | |
---|
46 | if ncomps < 1: |
---|
47 | print "You chose to return '0' canonical components. Please try rerunning the tool with number of components = 1 or more." |
---|
48 | sys.exit() |
---|
49 | elems = [] |
---|
50 | for i, line in enumerate( file ( infile )): |
---|
51 | line = line.rstrip('\r\n') |
---|
52 | if len( line )>0 and not line.startswith( '#' ): |
---|
53 | elems = line.split( '\t' ) |
---|
54 | break |
---|
55 | if i == 30: |
---|
56 | break # Hopefully we'll never get here... |
---|
57 | |
---|
58 | if len( elems )<1: |
---|
59 | stop_err( "The data in your input dataset is either missing or not formatted properly." ) |
---|
60 | |
---|
61 | x_vals = [] |
---|
62 | for k,col in enumerate(x_cols): |
---|
63 | x_cols[k] = int(col)-1 |
---|
64 | x_vals.append([]) |
---|
65 | y_vals = [] |
---|
66 | for k,col in enumerate(y_cols): |
---|
67 | y_cols[k] = int(col)-1 |
---|
68 | y_vals.append([]) |
---|
69 | NA = 'NA' |
---|
70 | skipped = 0 |
---|
71 | for ind,line in enumerate( file( infile )): |
---|
72 | if line and not line.startswith( '#' ): |
---|
73 | try: |
---|
74 | fields = line.strip().split("\t") |
---|
75 | valid_line = True |
---|
76 | for col in x_cols+y_cols: |
---|
77 | try: |
---|
78 | assert float(fields[col]) |
---|
79 | except: |
---|
80 | skipped += 1 |
---|
81 | valid_line = False |
---|
82 | break |
---|
83 | if valid_line: |
---|
84 | for k,col in enumerate(x_cols): |
---|
85 | try: |
---|
86 | xval = float(fields[col]) |
---|
87 | except: |
---|
88 | xval = NaN# |
---|
89 | x_vals[k].append(xval) |
---|
90 | for k,col in enumerate(y_cols): |
---|
91 | try: |
---|
92 | yval = float(fields[col]) |
---|
93 | except: |
---|
94 | yval = NaN# |
---|
95 | y_vals[k].append(yval) |
---|
96 | except: |
---|
97 | skipped += 1 |
---|
98 | |
---|
99 | x_vals1 = numpy.asarray(x_vals).transpose() |
---|
100 | y_vals1 = numpy.asarray(y_vals).transpose() |
---|
101 | |
---|
102 | x_dat= r.list(array(x_vals1)) |
---|
103 | y_dat= r.list(array(y_vals1)) |
---|
104 | |
---|
105 | try: |
---|
106 | r.suppressWarnings(r.library('kernlab')) |
---|
107 | except: |
---|
108 | stop_err('Missing R library kernlab') |
---|
109 | |
---|
110 | set_default_mode(NO_CONVERSION) |
---|
111 | if kernel=="rbfdot" or kernel=="anovadot": |
---|
112 | pars = r.list(sigma=float(options.sigma)) |
---|
113 | elif kernel=="polydot": |
---|
114 | pars = r.list(degree=float(options.degree),scale=float(options.scale),offset=float(options.offset)) |
---|
115 | elif kernel=="tanhdot": |
---|
116 | pars = r.list(scale=float(options.scale),offset=float(options.offset)) |
---|
117 | elif kernel=="besseldot": |
---|
118 | pars = r.list(degree=float(options.degree),sigma=float(options.sigma),order=float(options.order)) |
---|
119 | elif kernel=="anovadot": |
---|
120 | pars = r.list(degree=float(options.degree),sigma=float(options.sigma)) |
---|
121 | else: |
---|
122 | pars = rlist() |
---|
123 | |
---|
124 | try: |
---|
125 | kcc = r.kcca(x=x_dat, y=y_dat, kernel=kernel, kpar=pars, ncomps=ncomps) |
---|
126 | except RException, rex: |
---|
127 | stop_err("Encountered error while performing kCCA on the input data: %s" %(rex)) |
---|
128 | |
---|
129 | set_default_mode(BASIC_CONVERSION) |
---|
130 | kcor = r.kcor(kcc) |
---|
131 | if ncomps == 1: |
---|
132 | kcor = [kcor] |
---|
133 | xcoef = r.xcoef(kcc) |
---|
134 | ycoef = r.ycoef(kcc) |
---|
135 | |
---|
136 | print >>fout, "#Component\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) |
---|
137 | |
---|
138 | print >>fout, "#Correlation\t%s" %("\t".join(["%.4g" % el for el in kcor])) |
---|
139 | |
---|
140 | print >>fout, "#Estimated X-coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) |
---|
141 | for obs,val in enumerate(xcoef): |
---|
142 | print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) |
---|
143 | |
---|
144 | print >>fout, "#Estimated Y-coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) |
---|
145 | for obs,val in enumerate(ycoef): |
---|
146 | print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) |
---|