1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | from galaxy import eggs |
---|
4 | |
---|
5 | import sys, string |
---|
6 | from rpy import * |
---|
7 | import numpy |
---|
8 | |
---|
9 | def stop_err(msg): |
---|
10 | sys.stderr.write(msg) |
---|
11 | sys.exit() |
---|
12 | |
---|
13 | infile = sys.argv[1] |
---|
14 | y_col = int(sys.argv[2])-1 |
---|
15 | x_cols = sys.argv[3].split(',') |
---|
16 | outfile = sys.argv[4] |
---|
17 | outfile2 = sys.argv[5] |
---|
18 | print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) |
---|
19 | fout = open(outfile,'w') |
---|
20 | |
---|
21 | for i, line in enumerate( file ( infile )): |
---|
22 | line = line.rstrip('\r\n') |
---|
23 | if len( line )>0 and not line.startswith( '#' ): |
---|
24 | elems = line.split( '\t' ) |
---|
25 | break |
---|
26 | if i == 30: |
---|
27 | break # Hopefully we'll never get here... |
---|
28 | |
---|
29 | if len( elems )<1: |
---|
30 | stop_err( "The data in your input dataset is either missing or not formatted properly." ) |
---|
31 | |
---|
32 | y_vals = [] |
---|
33 | x_vals = [] |
---|
34 | |
---|
35 | for k,col in enumerate(x_cols): |
---|
36 | x_cols[k] = int(col)-1 |
---|
37 | x_vals.append([]) |
---|
38 | |
---|
39 | NA = 'NA' |
---|
40 | for ind,line in enumerate( file( infile )): |
---|
41 | if line and not line.startswith( '#' ): |
---|
42 | try: |
---|
43 | fields = line.split("\t") |
---|
44 | try: |
---|
45 | yval = float(fields[y_col]) |
---|
46 | except Exception, ey: |
---|
47 | yval = r('NA') |
---|
48 | y_vals.append(yval) |
---|
49 | for k,col in enumerate(x_cols): |
---|
50 | try: |
---|
51 | xval = float(fields[col]) |
---|
52 | except Exception, ex: |
---|
53 | xval = r('NA') |
---|
54 | x_vals[k].append(xval) |
---|
55 | except: |
---|
56 | pass |
---|
57 | |
---|
58 | response_term = "" |
---|
59 | |
---|
60 | x_vals1 = numpy.asarray(x_vals).transpose() |
---|
61 | |
---|
62 | dat= r.list(x=array(x_vals1), y=y_vals) |
---|
63 | |
---|
64 | r.library("leaps") |
---|
65 | |
---|
66 | set_default_mode(NO_CONVERSION) |
---|
67 | try: |
---|
68 | leaps = r.regsubsets(r("y ~ x"), data= r.na_exclude(dat)) |
---|
69 | except RException, rex: |
---|
70 | stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.") |
---|
71 | set_default_mode(BASIC_CONVERSION) |
---|
72 | |
---|
73 | summary = r.summary(leaps) |
---|
74 | tot = len(x_vals) |
---|
75 | pattern = "[" |
---|
76 | for i in range(tot): |
---|
77 | pattern = pattern + 'c' + str(int(x_cols[int(i)]) + 1) + ' ' |
---|
78 | pattern = pattern.strip() + ']' |
---|
79 | print >>fout, "#Vars\t%s\tR-sq\tAdj. R-sq\tC-p\tbic" %(pattern) |
---|
80 | for ind,item in enumerate(summary['outmat']): |
---|
81 | print >>fout, "%s\t%s\t%s\t%s\t%s\t%s" %(str(item).count('*'), item, summary['rsq'][ind], summary['adjr2'][ind], summary['cp'][ind], summary['bic'][ind]) |
---|
82 | |
---|
83 | |
---|
84 | r.pdf( outfile2, 8, 8 ) |
---|
85 | r.plot(leaps, scale="Cp", main="Best subsets using Cp Criterion") |
---|
86 | r.plot(leaps, scale="r2", main="Best subsets using R-sq Criterion") |
---|
87 | r.plot(leaps, scale="adjr2", main="Best subsets using Adjusted R-sq Criterion") |
---|
88 | r.plot(leaps, scale="bic", main="Best subsets using bic Criterion") |
---|
89 | |
---|
90 | r.dev_off() |
---|