1 | <tool id="BestSubsetsRegression1" name="Perform Best-subsets Regression">
|
---|
2 | <description> </description>
|
---|
3 | <command interpreter="python">
|
---|
4 | best_regression_subsets.py
|
---|
5 | $input1
|
---|
6 | $response_col
|
---|
7 | $predictor_cols
|
---|
8 | $out_file1
|
---|
9 | $out_file2
|
---|
10 | 1>/dev/null |
---|
11 | 2>/dev/null
|
---|
12 | </command>
|
---|
13 | <inputs>
|
---|
14 | <param format="tabular" name="input1" type="data" label="Select data" help="Query missing? See TIP below."/>
|
---|
15 | <param name="response_col" label="Response column (Y)" type="data_column" data_ref="input1" />
|
---|
16 | <param name="predictor_cols" label="Predictor columns (X)" type="data_column" data_ref="input1" multiple="true" > |
---|
17 | <validator type="no_options" message="Please select at least one column."/> |
---|
18 | </param>
|
---|
19 | </inputs>
|
---|
20 | <outputs>
|
---|
21 | <data format="input" name="out_file1" metadata_source="input1" />
|
---|
22 | <data format="pdf" name="out_file2" />
|
---|
23 | </outputs> |
---|
24 | <requirements> |
---|
25 | <requirement type="python-module">rpy</requirement> |
---|
26 | </requirements>
|
---|
27 | <tests> |
---|
28 | <!-- Testing this tool will not be possible because this tool produces a pdf output file. |
---|
29 | --> |
---|
30 | </tests>
|
---|
31 | <help>
|
---|
32 |
|
---|
33 | .. class:: infomark
|
---|
34 |
|
---|
35 | **TIP:** If your data is not TAB delimited, use *Edit Queries->Convert characters*
|
---|
36 |
|
---|
37 | -----
|
---|
38 |
|
---|
39 | .. class:: infomark
|
---|
40 |
|
---|
41 | **What it does**
|
---|
42 |
|
---|
43 | This tool uses the 'regsubsets' function from R statistical package for regression subset selection. It outputs two files, one containing a table with the best subsets and the corresponding summary statistics, and the other containing the graphical representation of the results.
|
---|
44 |
|
---|
45 | -----
|
---|
46 |
|
---|
47 | .. class:: warningmark
|
---|
48 |
|
---|
49 | **Note**
|
---|
50 |
|
---|
51 | - This tool currently treats all predictor and response variables as continuous variables.
|
---|
52 |
|
---|
53 | - Rows containing non-numeric (or missing) data in any of the chosen columns will be skipped from the analysis.
|
---|
54 |
|
---|
55 | - The 6 columns in the output are described below:
|
---|
56 |
|
---|
57 | - Column 1 (Vars): denotes the number of variables in the model
|
---|
58 | - Column 2 ([c2 c3 c4...]): represents a list of the user-selected predictor variables (full model). An asterix denotes the presence of the corresponding predictor variable in the selected model.
|
---|
59 | - Column 3 (R-sq): the fraction of variance explained by the model
|
---|
60 | - Column 4 (Adj. R-sq): the above R-squared statistic adjusted, penalizing for higher number of predictors (p)
|
---|
61 | - Column 5 (Cp): Mallow's Cp statistics
|
---|
62 | - Column 6 (bic): Bayesian Information Criterion.
|
---|
63 |
|
---|
64 |
|
---|
65 | </help>
|
---|
66 | </tool>
|
---|