1 | <tool id="lda_analy1" name="Perform LDA" version="1.0.1"> |
---|
2 | <description>Linear Discriminant Analysis</description> |
---|
3 | <command interpreter="sh">r_wrapper.sh $script_file</command> |
---|
4 | <inputs> |
---|
5 | <param format="tabular" name="input" type="data" label="Source file"/> |
---|
6 | <param name="cond" size="30" type="integer" value="3" label="Number of principal components" help="See TIP below"> |
---|
7 | <validator type="empty_field" message="Enter a valid number of principal components, see syntax below for examples"/> |
---|
8 | </param> |
---|
9 | |
---|
10 | </inputs> |
---|
11 | <outputs> |
---|
12 | <data format="txt" name="output" /> |
---|
13 | </outputs> |
---|
14 | |
---|
15 | <tests> |
---|
16 | <test> |
---|
17 | <param name="input" value="matrix_generator_for_pc_and_lda_output.tabular"/> |
---|
18 | <output name="output" file="lda_analy_output.txt"/> |
---|
19 | <param name="cond" value="2"/> |
---|
20 | |
---|
21 | </test> |
---|
22 | </tests> |
---|
23 | |
---|
24 | <configfiles> |
---|
25 | <configfile name="script_file"> |
---|
26 | |
---|
27 | rm(list = objects() ) |
---|
28 | |
---|
29 | ############# FORMAT X DATA ######################### |
---|
30 | format<-function(data) { |
---|
31 | ind=NULL |
---|
32 | for(i in 1 : ncol(data)){ |
---|
33 | if (is.na(data[nrow(data),i])) { |
---|
34 | ind<-c(ind,i) |
---|
35 | } |
---|
36 | } |
---|
37 | #print(is.null(ind)) |
---|
38 | if (!is.null(ind)) { |
---|
39 | data<-data[,-c(ind)] |
---|
40 | } |
---|
41 | |
---|
42 | data |
---|
43 | } |
---|
44 | |
---|
45 | ########GET RESPONSES ############################### |
---|
46 | get_resp<- function(data) { |
---|
47 | resp1<-as.vector(data[,ncol(data)]) |
---|
48 | resp=numeric(length(resp1)) |
---|
49 | for (i in 1:length(resp1)) { |
---|
50 | if (resp1[i]=="Y ") { |
---|
51 | resp[i] = 0 |
---|
52 | } |
---|
53 | if (resp1[i]=="X ") { |
---|
54 | resp[i] = 1 |
---|
55 | } |
---|
56 | } |
---|
57 | return(resp) |
---|
58 | } |
---|
59 | |
---|
60 | ######## CHARS TO NUMBERS ########################### |
---|
61 | f_to_numbers<- function(F) { |
---|
62 | ind<-NULL |
---|
63 | G<-matrix(0,nrow(F), ncol(F)) |
---|
64 | for (i in 1:nrow(F)) { |
---|
65 | for (j in 1:ncol(F)) { |
---|
66 | G[i,j]<-as.integer(F[i,j]) |
---|
67 | } |
---|
68 | } |
---|
69 | return(G) |
---|
70 | } |
---|
71 | |
---|
72 | ###################NORMALIZING######################### |
---|
73 | norm <- function(M, a=NULL, b=NULL) { |
---|
74 | C<-NULL |
---|
75 | ind<-NULL |
---|
76 | |
---|
77 | for (i in 1: ncol(M)) { |
---|
78 | if (sd(M[,i])!=0) { |
---|
79 | M[,i]<-(M[,i]-mean(M[,i]))/sd(M[,i]) |
---|
80 | } |
---|
81 | # else {print(mean(M[,i]))} |
---|
82 | } |
---|
83 | return(M) |
---|
84 | } |
---|
85 | |
---|
86 | ##### LDA DIRECTIONS ################################# |
---|
87 | lda_dec <- function(data, k){ |
---|
88 | priors=numeric(k) |
---|
89 | grandmean<-numeric(ncol(data)-1) |
---|
90 | means=matrix(0,k,ncol(data)-1) |
---|
91 | B = matrix(0, ncol(data)-1, ncol(data)-1) |
---|
92 | N=nrow(data) |
---|
93 | for (i in 1:k){ |
---|
94 | priors[i]=sum(data[,1]==i)/N |
---|
95 | grp=subset(data,data\$group==i) |
---|
96 | means[i,]=mean(grp[,2:ncol(data)]) |
---|
97 | #print(means[i,]) |
---|
98 | #print(priors[i]) |
---|
99 | #print(priors[i]*means[i,]) |
---|
100 | grandmean = priors[i]*means[i,] + grandmean |
---|
101 | } |
---|
102 | |
---|
103 | for (i in 1:k) { |
---|
104 | B= B + priors[i]*((means[i,]-grandmean)%*%t(means[i,]-grandmean)) |
---|
105 | } |
---|
106 | |
---|
107 | W = var(data[,2:ncol(data)]) |
---|
108 | svdW = svd(W) |
---|
109 | inv_sqrtW =solve(svdW\$v %*% diag(sqrt(svdW\$d)) %*% t(svdW\$v)) |
---|
110 | B_star= t(inv_sqrtW)%*%B%*%inv_sqrtW |
---|
111 | B_star_decomp = svd(B_star) |
---|
112 | directions = inv_sqrtW%*%B_star_decomp\$v |
---|
113 | return( list(directions, B_star_decomp\$d) ) |
---|
114 | } |
---|
115 | |
---|
116 | ################ NAIVE BAYES FOR 1D SIR OR LDA ############## |
---|
117 | naive_bayes_classifier <- function(resp, tr_data, test_data, k=2, tau) { |
---|
118 | tr_data=data.frame(resp=resp, dir=tr_data) |
---|
119 | means=numeric(k) |
---|
120 | #print(k) |
---|
121 | cl=numeric(k) |
---|
122 | predclass=numeric(length(test_data)) |
---|
123 | for (i in 1:k) { |
---|
124 | grp = subset(tr_data, resp==i) |
---|
125 | means[i] = mean(grp\$dir) |
---|
126 | #print(i, means[i]) |
---|
127 | } |
---|
128 | cutoff = tau*means[1]+(1-tau)*means[2] |
---|
129 | #print(tau) |
---|
130 | #print(means) |
---|
131 | #print(cutoff) |
---|
132 | if (cutoff>means[1]) { |
---|
133 | cl[1]=1 |
---|
134 | cl[2]=2 |
---|
135 | } |
---|
136 | else { |
---|
137 | cl[1]=2 |
---|
138 | cl[2]=1 |
---|
139 | } |
---|
140 | |
---|
141 | for (i in 1:length(test_data)) { |
---|
142 | |
---|
143 | if (test_data[i] <= cutoff) { |
---|
144 | predclass[i] = cl[1] |
---|
145 | } |
---|
146 | else { |
---|
147 | predclass[i] = cl[2] |
---|
148 | } |
---|
149 | } |
---|
150 | #print(means) |
---|
151 | #print(mean(means)) |
---|
152 | #X11() |
---|
153 | #plot(test_data,pch=predclass, col=resp) |
---|
154 | predclass |
---|
155 | } |
---|
156 | |
---|
157 | ################# EXTENDED ERROR RATES ################# |
---|
158 | ext_error_rate <- function(predclass, actualclass,msg=c("you forgot the message"), pr=1) { |
---|
159 | er=sum(predclass != actualclass)/length(predclass) |
---|
160 | |
---|
161 | matr<-data.frame(predclass=predclass,actualclass=actualclass) |
---|
162 | escapes = subset(matr, actualclass==1) |
---|
163 | subjects = subset(matr, actualclass==2) |
---|
164 | er_esc=sum(escapes\$predclass != escapes\$actualclass)/length(escapes\$predclass) |
---|
165 | er_subj=sum(subjects\$predclass != subjects\$actualclass)/length(subjects\$predclass) |
---|
166 | |
---|
167 | if (pr==1) { |
---|
168 | # print(paste(c(msg, 'overall : ', (1-er)*100, "%."),collapse=" ")) |
---|
169 | # print(paste(c(msg, 'within escapes : ', (1-er_esc)*100, "%."),collapse=" ")) |
---|
170 | # print(paste(c(msg, 'within subjects: ', (1-er_subj)*100, "%."),collapse=" ")) |
---|
171 | } |
---|
172 | return(c((1-er)*100, (1-er_esc)*100, (1-er_subj)*100)) |
---|
173 | } |
---|
174 | |
---|
175 | ## Main Function ## |
---|
176 | |
---|
177 | files<-matrix("${input}", 1,1, byrow=T) |
---|
178 | |
---|
179 | d<-"${cond}" # Number of PC |
---|
180 | |
---|
181 | tau<-seq(0,1, by=0.005) |
---|
182 | #tau<-seq(0,1, by=0.1) |
---|
183 | for_curve=matrix(-10, 3,length(tau)) |
---|
184 | |
---|
185 | ############################################################## |
---|
186 | |
---|
187 | test_data_whole_X <-read.delim(files[1,1], row.names=1) |
---|
188 | |
---|
189 | #### FORMAT TRAINING DATA #################################### |
---|
190 | # get only necessary columns |
---|
191 | |
---|
192 | test_data_whole_X<-format(test_data_whole_X) |
---|
193 | oligo_labels<-test_data_whole_X[1:(nrow(test_data_whole_X)-1),ncol(test_data_whole_X)] |
---|
194 | test_data_whole_X<-test_data_whole_X[,1:(ncol(test_data_whole_X)-1)] |
---|
195 | |
---|
196 | X_names<-colnames(test_data_whole_X)[1:ncol(test_data_whole_X)] |
---|
197 | test_data_whole_X<-t(test_data_whole_X) |
---|
198 | resp<-get_resp(test_data_whole_X) |
---|
199 | ldaqda_resp = resp + 1 |
---|
200 | a<-sum(resp) # Number of Subject |
---|
201 | b<-length(resp) - a # Number of Escape |
---|
202 | ## FREQUENCIES ################################################# |
---|
203 | F<-test_data_whole_X[,1:(ncol(test_data_whole_X)-1)] |
---|
204 | F<-f_to_numbers(F) |
---|
205 | FN<-norm(F, a, b) |
---|
206 | ss<-svd(FN) |
---|
207 | eigvar<-NULL |
---|
208 | eig<-ss\$d^2 |
---|
209 | |
---|
210 | for ( i in 1:length(ss\$d)) { |
---|
211 | eigvar[i]<-sum(eig[1:i])/sum(eig) |
---|
212 | } |
---|
213 | |
---|
214 | #print(paste(c("Variance explained : ", eigvar[d]*100, "%"), collapse="")) |
---|
215 | |
---|
216 | Z<-F%*%ss\$v |
---|
217 | |
---|
218 | ldaqda_data <- data.frame(group=ldaqda_resp,Z[,1:d]) |
---|
219 | lda_dir<-lda_dec(ldaqda_data,2) |
---|
220 | train_lda_pred <-Z[,1:d]%*%lda_dir[[1]] |
---|
221 | |
---|
222 | ############# NAIVE BAYES CROSS-VALIDATION ############# |
---|
223 | ### LDA ##### |
---|
224 | |
---|
225 | y<-ldaqda_resp |
---|
226 | X<-F |
---|
227 | cv<-matrix(c(rep('NA',nrow(test_data_whole_X))), nrow(test_data_whole_X), length(tau)) |
---|
228 | for (i in 1:nrow(test_data_whole_X)) { |
---|
229 | # print(i) |
---|
230 | resp<-y[-i] |
---|
231 | p<-matrix(X[-i,], dim(X)[1]-1, dim(X)[2]) |
---|
232 | testdata<-matrix(X[i,],1,dim(X)[2]) |
---|
233 | p1<-norm(p) |
---|
234 | sss<-svd(p1) |
---|
235 | pred<-(p%*%sss\$v)[,1:d] |
---|
236 | test<- (testdata%*%sss\$v)[,1:d] |
---|
237 | lda <- lda_dec(data.frame(group=resp,pred),2) |
---|
238 | pred <- pred[,1:d]%*%lda[[1]][,1] |
---|
239 | test <- test%*%lda[[1]][,1] |
---|
240 | test<-matrix(test, 1, length(test)) |
---|
241 | for (t in 1:length(tau)) { |
---|
242 | cv[i, t] <- naive_bayes_classifier (resp, pred, test,k=2, tau[t]) |
---|
243 | } |
---|
244 | } |
---|
245 | |
---|
246 | for (t in 1:length(tau)) { |
---|
247 | tr_err<-ext_error_rate(cv[,t], ldaqda_resp , c("CV"), 1) |
---|
248 | for_curve[1:3,t]<-tr_err |
---|
249 | } |
---|
250 | |
---|
251 | dput(for_curve, file="${output}") |
---|
252 | |
---|
253 | |
---|
254 | </configfile> |
---|
255 | </configfiles> |
---|
256 | |
---|
257 | <help> |
---|
258 | |
---|
259 | .. class:: infomark
|
---|
260 |
|
---|
261 | **TIP:** If you want to perform Principal Component Analysis (PCA) on the give numeric input data (which corresponds to the "Source file First in "Generate A Matrix" tool), please use *Multivariate Analysis/Principal Component Analysis*
|
---|
262 |
|
---|
263 | -----
|
---|
264 | |
---|
265 | .. class:: infomark |
---|
266 | |
---|
267 | **What it does** |
---|
268 | |
---|
269 | This tool consists of the module to perform the Linear Discriminant Analysis as described in Carrel et al., 2006 (PMID: 17009873) |
---|
270 | |
---|
271 | *Carrel L, Park C, Tyekucheva S, Dunn J, Chiaromonte F, et al. (2006) Genomic Environment Predicts Expression Patterns on the Human Inactive X Chromosome. PLoS Genet 2(9): e151. doi:10.1371/journal.pgen.0020151* |
---|
272 | |
---|
273 | ----- |
---|
274 | |
---|
275 | .. class:: warningmark
|
---|
276 |
|
---|
277 | **Note**
|
---|
278 | |
---|
279 | - Output from "Generate A Matrix" tool is used as input file for this tool
|
---|
280 | - Output of this tool contains LDA classification success rates for different values of the turning parameter tau (from 0 to 1 with 0.005 interval). This output file will be used to establish the ROC plot, and you can obtain more detail information from this plot. |
---|
281 | |
---|
282 | |
---|
283 | </help> |
---|
284 | |
---|
285 | </tool> |
---|