1 | <tool id="plot_for_lda_output1" name="Draw ROC" version="1.0.1"> |
---|
2 | <description>Receiver Operating Characteristic plot</description> |
---|
3 | <command interpreter="sh">r_wrapper.sh $script_file</command> |
---|
4 | |
---|
5 | <inputs> |
---|
6 | <param format="text" name="input" type="data" label="Source file"> </param> |
---|
7 | <param name="my_title" size="30" type="text" value="My Figure" label="Title of your plot" help="See syntax below"> </param> |
---|
8 | <param name="X_axis" size="30" type="text" value="Text for X axis" label="Legend of X axis in your plot" help="See syntax below"> </param> |
---|
9 | <param name="Y_axis" size="30" type="text" value="Text for Y axis" label="Legend of Y axis in your plot" help="See syntax below"> </param> |
---|
10 | </inputs> |
---|
11 | <outputs> |
---|
12 | <data format="pdf" name="pdf_output" /> |
---|
13 | </outputs> |
---|
14 | |
---|
15 | <tests> |
---|
16 | <test> |
---|
17 | <param name="input" value="lda_analy_output.txt"/> |
---|
18 | <param name="my_title" value="Test Plot1"/> |
---|
19 | <param name="X_axis" value="Test Plot2"/> |
---|
20 | <param name="Y_axis" value="Test Plot3"/> |
---|
21 | <output name="pdf_output" file="plot_for_lda_output.pdf"/> |
---|
22 | </test> |
---|
23 | </tests> |
---|
24 | |
---|
25 | <configfiles> |
---|
26 | <configfile name="script_file"> |
---|
27 | |
---|
28 | rm(list = objects() ) |
---|
29 | |
---|
30 | ############# FORMAT X DATA ######################### |
---|
31 | format<-function(data) { |
---|
32 | ind=NULL |
---|
33 | for(i in 1 : ncol(data)){ |
---|
34 | if (is.na(data[nrow(data),i])) { |
---|
35 | ind<-c(ind,i) |
---|
36 | } |
---|
37 | } |
---|
38 | #print(is.null(ind)) |
---|
39 | if (!is.null(ind)) { |
---|
40 | data<-data[,-c(ind)] |
---|
41 | } |
---|
42 | |
---|
43 | data |
---|
44 | } |
---|
45 | |
---|
46 | ########GET RESPONSES ############################### |
---|
47 | get_resp<- function(data) { |
---|
48 | resp1<-as.vector(data[,ncol(data)]) |
---|
49 | resp=numeric(length(resp1)) |
---|
50 | for (i in 1:length(resp1)) { |
---|
51 | if (resp1[i]=="Control ") { |
---|
52 | resp[i] = 0 |
---|
53 | } |
---|
54 | if (resp1[i]=="XLMR ") { |
---|
55 | resp[i] = 1 |
---|
56 | } |
---|
57 | } |
---|
58 | return(resp) |
---|
59 | } |
---|
60 | |
---|
61 | ######## CHARS TO NUMBERS ########################### |
---|
62 | f_to_numbers<- function(F) { |
---|
63 | ind<-NULL |
---|
64 | G<-matrix(0,nrow(F), ncol(F)) |
---|
65 | for (i in 1:nrow(F)) { |
---|
66 | for (j in 1:ncol(F)) { |
---|
67 | G[i,j]<-as.integer(F[i,j]) |
---|
68 | } |
---|
69 | } |
---|
70 | return(G) |
---|
71 | } |
---|
72 | |
---|
73 | ###################NORMALIZING######################### |
---|
74 | norm <- function(M, a=NULL, b=NULL) { |
---|
75 | C<-NULL |
---|
76 | ind<-NULL |
---|
77 | |
---|
78 | for (i in 1: ncol(M)) { |
---|
79 | if (sd(M[,i])!=0) { |
---|
80 | M[,i]<-(M[,i]-mean(M[,i]))/sd(M[,i]) |
---|
81 | } |
---|
82 | # else {print(mean(M[,i]))} |
---|
83 | } |
---|
84 | return(M) |
---|
85 | } |
---|
86 | |
---|
87 | ##### LDA DIRECTIONS ################################# |
---|
88 | lda_dec <- function(data, k){ |
---|
89 | priors=numeric(k) |
---|
90 | grandmean<-numeric(ncol(data)-1) |
---|
91 | means=matrix(0,k,ncol(data)-1) |
---|
92 | B = matrix(0, ncol(data)-1, ncol(data)-1) |
---|
93 | N=nrow(data) |
---|
94 | for (i in 1:k){ |
---|
95 | priors[i]=sum(data[,1]==i)/N |
---|
96 | grp=subset(data,data\$group==i) |
---|
97 | means[i,]=mean(grp[,2:ncol(data)]) |
---|
98 | #print(means[i,]) |
---|
99 | #print(priors[i]) |
---|
100 | #print(priors[i]*means[i,]) |
---|
101 | grandmean = priors[i]*means[i,] + grandmean |
---|
102 | } |
---|
103 | |
---|
104 | for (i in 1:k) { |
---|
105 | B= B + priors[i]*((means[i,]-grandmean)%*%t(means[i,]-grandmean)) |
---|
106 | } |
---|
107 | |
---|
108 | W = var(data[,2:ncol(data)]) |
---|
109 | svdW = svd(W) |
---|
110 | inv_sqrtW =solve(svdW\$v %*% diag(sqrt(svdW\$d)) %*% t(svdW\$v)) |
---|
111 | B_star= t(inv_sqrtW)%*%B%*%inv_sqrtW |
---|
112 | B_star_decomp = svd(B_star) |
---|
113 | directions = inv_sqrtW%*%B_star_decomp\$v |
---|
114 | return( list(directions, B_star_decomp\$d) ) |
---|
115 | } |
---|
116 | |
---|
117 | ################ NAIVE BAYES FOR 1D SIR OR LDA ############## |
---|
118 | naive_bayes_classifier <- function(resp, tr_data, test_data, k=2, tau) { |
---|
119 | tr_data=data.frame(resp=resp, dir=tr_data) |
---|
120 | means=numeric(k) |
---|
121 | #print(k) |
---|
122 | cl=numeric(k) |
---|
123 | predclass=numeric(length(test_data)) |
---|
124 | for (i in 1:k) { |
---|
125 | grp = subset(tr_data, resp==i) |
---|
126 | means[i] = mean(grp\$dir) |
---|
127 | #print(i, means[i]) |
---|
128 | } |
---|
129 | cutoff = tau*means[1]+(1-tau)*means[2] |
---|
130 | #print(tau) |
---|
131 | #print(means) |
---|
132 | #print(cutoff) |
---|
133 | if (cutoff>means[1]) { |
---|
134 | cl[1]=1 |
---|
135 | cl[2]=2 |
---|
136 | } |
---|
137 | else { |
---|
138 | cl[1]=2 |
---|
139 | cl[2]=1 |
---|
140 | } |
---|
141 | |
---|
142 | for (i in 1:length(test_data)) { |
---|
143 | |
---|
144 | if (test_data[i] <= cutoff) { |
---|
145 | predclass[i] = cl[1] |
---|
146 | } |
---|
147 | else { |
---|
148 | predclass[i] = cl[2] |
---|
149 | } |
---|
150 | } |
---|
151 | #print(means) |
---|
152 | #print(mean(means)) |
---|
153 | #X11() |
---|
154 | #plot(test_data,pch=predclass, col=resp) |
---|
155 | predclass |
---|
156 | } |
---|
157 | |
---|
158 | ################# EXTENDED ERROR RATES ################# |
---|
159 | ext_error_rate <- function(predclass, actualclass,msg=c("you forgot the message"), pr=1) { |
---|
160 | er=sum(predclass != actualclass)/length(predclass) |
---|
161 | |
---|
162 | matr<-data.frame(predclass=predclass,actualclass=actualclass) |
---|
163 | escapes = subset(matr, actualclass==1) |
---|
164 | subjects = subset(matr, actualclass==2) |
---|
165 | er_esc=sum(escapes\$predclass != escapes\$actualclass)/length(escapes\$predclass) |
---|
166 | er_subj=sum(subjects\$predclass != subjects\$actualclass)/length(subjects\$predclass) |
---|
167 | |
---|
168 | if (pr==1) { |
---|
169 | # print(paste(c(msg, 'overall : ', (1-er)*100, "%."),collapse=" ")) |
---|
170 | # print(paste(c(msg, 'within escapes : ', (1-er_esc)*100, "%."),collapse=" ")) |
---|
171 | # print(paste(c(msg, 'within subjects: ', (1-er_subj)*100, "%."),collapse=" ")) |
---|
172 | } |
---|
173 | return(c((1-er)*100, (1-er_esc)*100, (1-er_subj)*100)) |
---|
174 | } |
---|
175 | |
---|
176 | ## Main Function ## |
---|
177 | |
---|
178 | files_alias<-c("${my_title}") |
---|
179 | tau=seq(0,1,by=0.005) |
---|
180 | nfiles=1 |
---|
181 | f = c("${input}") |
---|
182 | |
---|
183 | rez_ext<-list() |
---|
184 | for (i in 1:nfiles) { |
---|
185 | rez_ext[[i]]<-dget(paste(f[i], sep="",collapse="")) |
---|
186 | } |
---|
187 | |
---|
188 | tau<-tau[1:(length(tau)-1)] |
---|
189 | for (i in 1:nfiles) { |
---|
190 | rez_ext[[i]]<-rez_ext[[i]][,1:(length(tau)-1)] |
---|
191 | } |
---|
192 | |
---|
193 | ######## OPTIMAIL TAU ########################### |
---|
194 | |
---|
195 | #rez_ext |
---|
196 | |
---|
197 | rate<-c("Optimal tau","Tr total", "Tr Y", "Tr X") |
---|
198 | |
---|
199 | m_tr<-numeric(nfiles) |
---|
200 | m_xp22<-numeric(nfiles) |
---|
201 | m_x<-numeric(nfiles) |
---|
202 | |
---|
203 | for (i in 1:nfiles) { |
---|
204 | r<-rez_ext[[i]] |
---|
205 | #tr |
---|
206 | # rate<-rbind(rate, c(files_alias[i]," "," "," ") ) |
---|
207 | mm<-which((r[3,])==max(r[3,])) |
---|
208 | |
---|
209 | m_tr[i]<-mm[1] |
---|
210 | rate<-rbind(rate,c(tau[m_tr[i]],r[,m_tr[i]])) |
---|
211 | } |
---|
212 | print(rate) |
---|
213 | |
---|
214 | pdf(file= paste("${pdf_output}")) |
---|
215 | |
---|
216 | plot(rez_ext[[i]][2,]~rez_ext[[i]][3,], xlim=c(0,100), ylim=c(0,100), xlab="${X_axis} [1-FP(False Positive)]", ylab="${Y_axis} [1-FP(False Positive)]", type="l", lty=1, col="blue", xaxt='n', yaxt='n') |
---|
217 | for (i in 1:nfiles) { |
---|
218 | lines(rez_ext[[i]][2,]~rez_ext[[i]][3,], xlab="${X_axis} [1-FP(False Positive)]", ylab="${Y_axis} [1-FP(False Positive)]", type="l", lty=1, col=i) |
---|
219 | # pt=c(r,) |
---|
220 | points(x=rez_ext[[i]][3,m_tr[i]],y=rez_ext[[i]][2,m_tr[i]], pch=16, col=i) |
---|
221 | } |
---|
222 | |
---|
223 | |
---|
224 | title(main="${my_title}", adj=0, cex.main=1.1) |
---|
225 | axis(2, at=c(0,20,40,60,80,100), labels=c('0','20','40','60','80','100%')) |
---|
226 | axis(1, at=c(0,20,40,60,80,100), labels=c('0','20','40','60','80','100%')) |
---|
227 | |
---|
228 | #leg=c("10 kb","50 kb","100 kb") |
---|
229 | #legend("bottomleft",legend=leg , col=c(1,2,3), lty=c(1,1,1)) |
---|
230 | |
---|
231 | #dev.off() |
---|
232 | |
---|
233 | </configfile> |
---|
234 | </configfiles> |
---|
235 | |
---|
236 | |
---|
237 | <help> |
---|
238 | |
---|
239 | |
---|
240 | </help> |
---|
241 | |
---|
242 | |
---|
243 | |
---|
244 | </tool> |
---|