| 1 | <tool id="plot_for_lda_output1" name="Draw ROC" version="1.0.1"> |
|---|
| 2 | <description>Receiver Operating Characteristic plot</description> |
|---|
| 3 | <command interpreter="sh">r_wrapper.sh $script_file</command> |
|---|
| 4 | |
|---|
| 5 | <inputs> |
|---|
| 6 | <param format="text" name="input" type="data" label="Source file"> </param> |
|---|
| 7 | <param name="my_title" size="30" type="text" value="My Figure" label="Title of your plot" help="See syntax below"> </param> |
|---|
| 8 | <param name="X_axis" size="30" type="text" value="Text for X axis" label="Legend of X axis in your plot" help="See syntax below"> </param> |
|---|
| 9 | <param name="Y_axis" size="30" type="text" value="Text for Y axis" label="Legend of Y axis in your plot" help="See syntax below"> </param> |
|---|
| 10 | </inputs> |
|---|
| 11 | <outputs> |
|---|
| 12 | <data format="pdf" name="pdf_output" /> |
|---|
| 13 | </outputs> |
|---|
| 14 | |
|---|
| 15 | <tests> |
|---|
| 16 | <test> |
|---|
| 17 | <param name="input" value="lda_analy_output.txt"/> |
|---|
| 18 | <param name="my_title" value="Test Plot1"/> |
|---|
| 19 | <param name="X_axis" value="Test Plot2"/> |
|---|
| 20 | <param name="Y_axis" value="Test Plot3"/> |
|---|
| 21 | <output name="pdf_output" file="plot_for_lda_output.pdf"/> |
|---|
| 22 | </test> |
|---|
| 23 | </tests> |
|---|
| 24 | |
|---|
| 25 | <configfiles> |
|---|
| 26 | <configfile name="script_file"> |
|---|
| 27 | |
|---|
| 28 | rm(list = objects() ) |
|---|
| 29 | |
|---|
| 30 | ############# FORMAT X DATA ######################### |
|---|
| 31 | format<-function(data) { |
|---|
| 32 | ind=NULL |
|---|
| 33 | for(i in 1 : ncol(data)){ |
|---|
| 34 | if (is.na(data[nrow(data),i])) { |
|---|
| 35 | ind<-c(ind,i) |
|---|
| 36 | } |
|---|
| 37 | } |
|---|
| 38 | #print(is.null(ind)) |
|---|
| 39 | if (!is.null(ind)) { |
|---|
| 40 | data<-data[,-c(ind)] |
|---|
| 41 | } |
|---|
| 42 | |
|---|
| 43 | data |
|---|
| 44 | } |
|---|
| 45 | |
|---|
| 46 | ########GET RESPONSES ############################### |
|---|
| 47 | get_resp<- function(data) { |
|---|
| 48 | resp1<-as.vector(data[,ncol(data)]) |
|---|
| 49 | resp=numeric(length(resp1)) |
|---|
| 50 | for (i in 1:length(resp1)) { |
|---|
| 51 | if (resp1[i]=="Control ") { |
|---|
| 52 | resp[i] = 0 |
|---|
| 53 | } |
|---|
| 54 | if (resp1[i]=="XLMR ") { |
|---|
| 55 | resp[i] = 1 |
|---|
| 56 | } |
|---|
| 57 | } |
|---|
| 58 | return(resp) |
|---|
| 59 | } |
|---|
| 60 | |
|---|
| 61 | ######## CHARS TO NUMBERS ########################### |
|---|
| 62 | f_to_numbers<- function(F) { |
|---|
| 63 | ind<-NULL |
|---|
| 64 | G<-matrix(0,nrow(F), ncol(F)) |
|---|
| 65 | for (i in 1:nrow(F)) { |
|---|
| 66 | for (j in 1:ncol(F)) { |
|---|
| 67 | G[i,j]<-as.integer(F[i,j]) |
|---|
| 68 | } |
|---|
| 69 | } |
|---|
| 70 | return(G) |
|---|
| 71 | } |
|---|
| 72 | |
|---|
| 73 | ###################NORMALIZING######################### |
|---|
| 74 | norm <- function(M, a=NULL, b=NULL) { |
|---|
| 75 | C<-NULL |
|---|
| 76 | ind<-NULL |
|---|
| 77 | |
|---|
| 78 | for (i in 1: ncol(M)) { |
|---|
| 79 | if (sd(M[,i])!=0) { |
|---|
| 80 | M[,i]<-(M[,i]-mean(M[,i]))/sd(M[,i]) |
|---|
| 81 | } |
|---|
| 82 | # else {print(mean(M[,i]))} |
|---|
| 83 | } |
|---|
| 84 | return(M) |
|---|
| 85 | } |
|---|
| 86 | |
|---|
| 87 | ##### LDA DIRECTIONS ################################# |
|---|
| 88 | lda_dec <- function(data, k){ |
|---|
| 89 | priors=numeric(k) |
|---|
| 90 | grandmean<-numeric(ncol(data)-1) |
|---|
| 91 | means=matrix(0,k,ncol(data)-1) |
|---|
| 92 | B = matrix(0, ncol(data)-1, ncol(data)-1) |
|---|
| 93 | N=nrow(data) |
|---|
| 94 | for (i in 1:k){ |
|---|
| 95 | priors[i]=sum(data[,1]==i)/N |
|---|
| 96 | grp=subset(data,data\$group==i) |
|---|
| 97 | means[i,]=mean(grp[,2:ncol(data)]) |
|---|
| 98 | #print(means[i,]) |
|---|
| 99 | #print(priors[i]) |
|---|
| 100 | #print(priors[i]*means[i,]) |
|---|
| 101 | grandmean = priors[i]*means[i,] + grandmean |
|---|
| 102 | } |
|---|
| 103 | |
|---|
| 104 | for (i in 1:k) { |
|---|
| 105 | B= B + priors[i]*((means[i,]-grandmean)%*%t(means[i,]-grandmean)) |
|---|
| 106 | } |
|---|
| 107 | |
|---|
| 108 | W = var(data[,2:ncol(data)]) |
|---|
| 109 | svdW = svd(W) |
|---|
| 110 | inv_sqrtW =solve(svdW\$v %*% diag(sqrt(svdW\$d)) %*% t(svdW\$v)) |
|---|
| 111 | B_star= t(inv_sqrtW)%*%B%*%inv_sqrtW |
|---|
| 112 | B_star_decomp = svd(B_star) |
|---|
| 113 | directions = inv_sqrtW%*%B_star_decomp\$v |
|---|
| 114 | return( list(directions, B_star_decomp\$d) ) |
|---|
| 115 | } |
|---|
| 116 | |
|---|
| 117 | ################ NAIVE BAYES FOR 1D SIR OR LDA ############## |
|---|
| 118 | naive_bayes_classifier <- function(resp, tr_data, test_data, k=2, tau) { |
|---|
| 119 | tr_data=data.frame(resp=resp, dir=tr_data) |
|---|
| 120 | means=numeric(k) |
|---|
| 121 | #print(k) |
|---|
| 122 | cl=numeric(k) |
|---|
| 123 | predclass=numeric(length(test_data)) |
|---|
| 124 | for (i in 1:k) { |
|---|
| 125 | grp = subset(tr_data, resp==i) |
|---|
| 126 | means[i] = mean(grp\$dir) |
|---|
| 127 | #print(i, means[i]) |
|---|
| 128 | } |
|---|
| 129 | cutoff = tau*means[1]+(1-tau)*means[2] |
|---|
| 130 | #print(tau) |
|---|
| 131 | #print(means) |
|---|
| 132 | #print(cutoff) |
|---|
| 133 | if (cutoff>means[1]) { |
|---|
| 134 | cl[1]=1 |
|---|
| 135 | cl[2]=2 |
|---|
| 136 | } |
|---|
| 137 | else { |
|---|
| 138 | cl[1]=2 |
|---|
| 139 | cl[2]=1 |
|---|
| 140 | } |
|---|
| 141 | |
|---|
| 142 | for (i in 1:length(test_data)) { |
|---|
| 143 | |
|---|
| 144 | if (test_data[i] <= cutoff) { |
|---|
| 145 | predclass[i] = cl[1] |
|---|
| 146 | } |
|---|
| 147 | else { |
|---|
| 148 | predclass[i] = cl[2] |
|---|
| 149 | } |
|---|
| 150 | } |
|---|
| 151 | #print(means) |
|---|
| 152 | #print(mean(means)) |
|---|
| 153 | #X11() |
|---|
| 154 | #plot(test_data,pch=predclass, col=resp) |
|---|
| 155 | predclass |
|---|
| 156 | } |
|---|
| 157 | |
|---|
| 158 | ################# EXTENDED ERROR RATES ################# |
|---|
| 159 | ext_error_rate <- function(predclass, actualclass,msg=c("you forgot the message"), pr=1) { |
|---|
| 160 | er=sum(predclass != actualclass)/length(predclass) |
|---|
| 161 | |
|---|
| 162 | matr<-data.frame(predclass=predclass,actualclass=actualclass) |
|---|
| 163 | escapes = subset(matr, actualclass==1) |
|---|
| 164 | subjects = subset(matr, actualclass==2) |
|---|
| 165 | er_esc=sum(escapes\$predclass != escapes\$actualclass)/length(escapes\$predclass) |
|---|
| 166 | er_subj=sum(subjects\$predclass != subjects\$actualclass)/length(subjects\$predclass) |
|---|
| 167 | |
|---|
| 168 | if (pr==1) { |
|---|
| 169 | # print(paste(c(msg, 'overall : ', (1-er)*100, "%."),collapse=" ")) |
|---|
| 170 | # print(paste(c(msg, 'within escapes : ', (1-er_esc)*100, "%."),collapse=" ")) |
|---|
| 171 | # print(paste(c(msg, 'within subjects: ', (1-er_subj)*100, "%."),collapse=" ")) |
|---|
| 172 | } |
|---|
| 173 | return(c((1-er)*100, (1-er_esc)*100, (1-er_subj)*100)) |
|---|
| 174 | } |
|---|
| 175 | |
|---|
| 176 | ## Main Function ## |
|---|
| 177 | |
|---|
| 178 | files_alias<-c("${my_title}") |
|---|
| 179 | tau=seq(0,1,by=0.005) |
|---|
| 180 | nfiles=1 |
|---|
| 181 | f = c("${input}") |
|---|
| 182 | |
|---|
| 183 | rez_ext<-list() |
|---|
| 184 | for (i in 1:nfiles) { |
|---|
| 185 | rez_ext[[i]]<-dget(paste(f[i], sep="",collapse="")) |
|---|
| 186 | } |
|---|
| 187 | |
|---|
| 188 | tau<-tau[1:(length(tau)-1)] |
|---|
| 189 | for (i in 1:nfiles) { |
|---|
| 190 | rez_ext[[i]]<-rez_ext[[i]][,1:(length(tau)-1)] |
|---|
| 191 | } |
|---|
| 192 | |
|---|
| 193 | ######## OPTIMAIL TAU ########################### |
|---|
| 194 | |
|---|
| 195 | #rez_ext |
|---|
| 196 | |
|---|
| 197 | rate<-c("Optimal tau","Tr total", "Tr Y", "Tr X") |
|---|
| 198 | |
|---|
| 199 | m_tr<-numeric(nfiles) |
|---|
| 200 | m_xp22<-numeric(nfiles) |
|---|
| 201 | m_x<-numeric(nfiles) |
|---|
| 202 | |
|---|
| 203 | for (i in 1:nfiles) { |
|---|
| 204 | r<-rez_ext[[i]] |
|---|
| 205 | #tr |
|---|
| 206 | # rate<-rbind(rate, c(files_alias[i]," "," "," ") ) |
|---|
| 207 | mm<-which((r[3,])==max(r[3,])) |
|---|
| 208 | |
|---|
| 209 | m_tr[i]<-mm[1] |
|---|
| 210 | rate<-rbind(rate,c(tau[m_tr[i]],r[,m_tr[i]])) |
|---|
| 211 | } |
|---|
| 212 | print(rate) |
|---|
| 213 | |
|---|
| 214 | pdf(file= paste("${pdf_output}")) |
|---|
| 215 | |
|---|
| 216 | plot(rez_ext[[i]][2,]~rez_ext[[i]][3,], xlim=c(0,100), ylim=c(0,100), xlab="${X_axis} [1-FP(False Positive)]", ylab="${Y_axis} [1-FP(False Positive)]", type="l", lty=1, col="blue", xaxt='n', yaxt='n') |
|---|
| 217 | for (i in 1:nfiles) { |
|---|
| 218 | lines(rez_ext[[i]][2,]~rez_ext[[i]][3,], xlab="${X_axis} [1-FP(False Positive)]", ylab="${Y_axis} [1-FP(False Positive)]", type="l", lty=1, col=i) |
|---|
| 219 | # pt=c(r,) |
|---|
| 220 | points(x=rez_ext[[i]][3,m_tr[i]],y=rez_ext[[i]][2,m_tr[i]], pch=16, col=i) |
|---|
| 221 | } |
|---|
| 222 | |
|---|
| 223 | |
|---|
| 224 | title(main="${my_title}", adj=0, cex.main=1.1) |
|---|
| 225 | axis(2, at=c(0,20,40,60,80,100), labels=c('0','20','40','60','80','100%')) |
|---|
| 226 | axis(1, at=c(0,20,40,60,80,100), labels=c('0','20','40','60','80','100%')) |
|---|
| 227 | |
|---|
| 228 | #leg=c("10 kb","50 kb","100 kb") |
|---|
| 229 | #legend("bottomleft",legend=leg , col=c(1,2,3), lty=c(1,1,1)) |
|---|
| 230 | |
|---|
| 231 | #dev.off() |
|---|
| 232 | |
|---|
| 233 | </configfile> |
|---|
| 234 | </configfiles> |
|---|
| 235 | |
|---|
| 236 | |
|---|
| 237 | <help> |
|---|
| 238 | |
|---|
| 239 | |
|---|
| 240 | </help> |
|---|
| 241 | |
|---|
| 242 | |
|---|
| 243 | |
|---|
| 244 | </tool> |
|---|