Output from rgEigPCA.py run at 19/05/2010 15:14:48

newfilepath=/opt/galaxy/test-data/rgtestouts/rgEigPCA, rexe=R(click on the image below to see a much higher quality PDF version)
Samples plotted in first 2 eigenvector space

All Files:
  1. Rplots.pdf (813 B)
  2. rgEigPCAtest1.R (1.6 KB)
  3. rgEigPCAtest1.html
  4. rgEigPCAtest1.txt (3.3 KB)
  5. rgEigPCAtest1_PCAPlot.pdf (7.9 KB)
  6. rgEigPCAtest1_PCAPlot.pdf.png (27.1 KB)
  7. rgEigPCAtest1_eigensoftplot.pdf.pdf (2.1 KB)
  8. rgEigPCAtest1_eigensoftplot.pdf.ps (13.6 KB)
  9. rgEigPCAtest1_eigensoftplot.pdf.xtxt (257 B)
  10. rgEigPCAtest1_eval.xls (507 B)
  11. rgEigPCAtest1_log.txt (6.0 KB)
  12. rgEigPCAtest1_pca.xls (1.3 KB)
  13. rgEigPCAtest1_pca.xls.evec (3.3 KB)
  14. rgEigPCAtest1_pca.xls.par (311 B)
Log rgEigPCAtest1_log.txt contents follow below

parameter file: rgEigPCAtest1_pca.xls.par
### THE INPUT PARAMETERS
##PARAMETER NAME: VALUE
genotypename: /opt/galaxy/test-data/tinywga.bed
snpname: /opt/galaxy/test-data/tinywga.bim
indivname: /opt/galaxy/test-data/tinywga.fam
evecoutname: rgEigPCAtest1_pca.xls.evec
evaloutname: rgEigPCAtest1_eval.xls
altnormstyle: NO
numoutevec: 4
numoutlieriter: 2
numoutlierevec: 2
outliersigmathresh: 2
qtmode: 0
## smartpca version: 8000
norm used

genetic distance set from physical distance
genotype file processed
number of samples used: 40 number of snps used: 25
REMOVED outlier 1334:2 iter 1 evec 1 sigmage -2.329
number of samples after outlier removal: 39

## Tracy-Widom statistics: rows: 39  cols: 24
  #N    eigenvalue  difference    twstat      p-value effect. n
   1     11.481974          NA    -0.712     0.332198     8.854
   2      7.739771   -3.742203    -1.302     0.510496     8.388
   3      7.254586   -0.485185    -0.171     0.201072     7.095
   4      4.270950   -2.983636    -0.191     0.205302     8.005
   5      2.538320   -1.732630    -0.341     0.238117     9.118
   6      1.667964   -0.870356    -0.231      0.21376     9.910
   7      1.043403   -0.624560    -0.269     0.222042    11.590
   8      0.653401   -0.390003        NA           NA        NA
   9      0.391044   -0.262357        NA           NA        NA
  10      0.338164   -0.052880        NA           NA        NA
  11      0.263384   -0.074780        NA           NA        NA
  12      0.150750   -0.112634        NA           NA        NA
  13      0.085580   -0.065170        NA           NA        NA
  14      0.065301   -0.020279        NA           NA        NA
  15      0.048797   -0.016504        NA           NA        NA
  16      0.006611   -0.042186        NA           NA        NA
    kurtosis           snps    indivs
 eigenvector    1     1.926     2.122
 eigenvector    2     2.599     2.148
 eigenvector    3     2.593     2.873
 eigenvector    4     3.165     2.831
population:   0                 Case    9
population:   1              Control   30

## Average divergence between populations:
                 Case    Control     popsize
      Case      1.028      0.954           9
   Control      0.954      0.972          30


number of blocks for moving block jackknife: 1
fst *1000:
          C     C 
   C      0     0
   C      0     0

s.dev * 1000000:
          C     C 
   C      0     0
   C      0     0

## Anova statistics for population differences along each eigenvector:
                                              p-value
             eigenvector_1_Case_Control_      0.841067 
             eigenvector_2_Case_Control_      0.758376 
             eigenvector_3_Case_Control_      0.238793 
             eigenvector_4_Case_Control_      0.678458 

## Statistical significance of differences beween populations:
                                pop1                  pop2      chisq          p-value   |pop1|   |pop2|
popdifference:                  Case               Control         1.810       0.77061       9      30

eigbestsnp    1             rs762601 22     21898858     1.674
eigbestsnp    1            rs2156921 22     21899063     1.674
eigbestsnp    1            rs4822375 22     21905642     1.674
eigbestsnp    1            rs5751611 22     21896019     1.635
eigbestsnp    1            rs4820537 22     21794810     1.542
eigbestsnp    1            rs3788347 22     21797804     1.413
eigbestsnp    1            rs2267000 22     21785366     1.151
eigbestsnp    1            rs4820539 22     21807970     1.141
eigbestsnp    1            rs5751592 22     21827674     0.890
eigbestsnp    1            rs2283804 22     21820335     0.815
eigbestsnp    1            rs2267006 22     21820990     0.815
eigbestsnp    2            rs5759608 22     21832708     2.197
eigbestsnp    2            rs5759612 22     21833170     2.197
eigbestsnp    2            rs2283804 22     21820335     1.643
eigbestsnp    2            rs2267006 22     21820990     1.643
eigbestsnp    2            rs2283802 22     21784722     1.283
eigbestsnp    2            rs2267009 22     21860168     1.283
eigbestsnp    2            rs2071436 22     21871488     1.283
eigbestsnp    2             rs756632 22     21799918     0.942
eigbestsnp    2           rs16997606 22     21794754     0.715
eigbestsnp    2            rs6003566 22     21889806     0.645
eigbestsnp    2             rs762601 22     21898858     0.545
eigbestsnp    3           rs16997606 22     21794754     1.770
eigbestsnp    3            rs6003566 22     21889806     1.725
eigbestsnp    3            rs3788347 22     21797804     1.452
eigbestsnp    3            rs2267000 22     21785366     1.386
eigbestsnp    3            rs2283802 22     21784722     1.247
eigbestsnp    3            rs2267009 22     21860168     1.247
eigbestsnp    3            rs2071436 22     21871488     1.247
eigbestsnp    3            rs4820537 22     21794810     1.168
eigbestsnp    3             rs762601 22     21898858     1.153
eigbestsnp    3            rs2156921 22     21899063     1.153
eigbestsnp    3            rs4822375 22     21905642     1.153
eigbestsnp    4             rs756632 22     21799918     2.146
eigbestsnp    4            rs4820539 22     21807970     1.938
eigbestsnp    4            rs2267013 22     21875879     1.917
eigbestsnp    4            rs2256725 22     21892891     1.917
eigbestsnp    4            rs2283804 22     21820335     1.336
eigbestsnp    4            rs2267006 22     21820990     1.336
eigbestsnp    4            rs6003566 22     21889806     1.000
eigbestsnp    4           rs16997606 22     21794754     0.875
eigbestsnp    4            rs5751611 22     21896019     0.823
eigbestsnp    4            rs5759636 22     21868698     0.799
eigbestsnp    4            rs2267000 22     21785366     0.584
packedancestrymap output
##end of smartpca run

Correlation between eigenvector 1 (of 4) and Case/Control status is 0.033
Correlation between eigenvector 2 (of 4) and Case/Control status is 0.051
Correlation between eigenvector 3 (of 4) and Case/Control status is 0.193
Correlation between eigenvector 4 (of 4) and Case/Control status is -0.069
If you need to rerun this analysis, the command line used was smartpca.perl -i /opt/galaxy/test-data/tinywga.bed -a /opt/galaxy/test-data/tinywga.bim -b /opt/galaxy/test-data/tinywga.fam -o rgEigPCAtest1_pca.xls -p rgEigPCAtest1_eigensoftplot.pdf -e rgEigPCAtest1_eval.xls -l rgEigPCAtest1_log.txt -k 4 -m 2 -t 2 -s 2